如何使用 andrew_curves 绘制 pandas 数据框?
How to plot a pandas dataframe with andrew_curves?
我有以下 pandas 数据框:
df = pd.read_csv('path/file/file.csv',
header=0, sep=',', names=['PhraseId', 'SentenceId', 'Phrase', 'Sentiment'])
我想用 andrew_curves 打印它 我尝试了以下方法:
andrews_curves(df, 'Name')
知道如何绘制这个吗?这是 csv 的内容:
PhraseId, SentenceId, Phrase, Sentiment
1, 1, A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., 1
2, 1, A series of escapades demonstrating the adage that what is good for the goose, 2
3, 1, A series, 2
4, 1, A, 2
5, 1, series, 2
6, 1, of escapades demonstrating the adage that what is good for the goose, 2
7, 1, of, 2
8, 1, escapades demonstrating the adage that what is good for the goose, 2
9, 1, escapades, 2
10, 1, demonstrating the adage that what is good for the goose, 2
11, 1, demonstrating the adage, 2
12, 1, demonstrating, 2
13, 1, the adage, 2
14, 1, the, 2
15, 1, adage, 2
16, 1, that what is good for the goose, 2
17, 1, that, 2
18, 1, what is good for the goose, 2
19, 1, what, 2
20, 1, is good for the goose, 2
21, 1, is, 2
22, 1, good for the goose, 3
23, 1, good, 3
24, 1, for the goose, 2
25, 1, for, 2
26, 1, the goose, 2
27, 1, goose, 2
28, 1, is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., 2
29, 1, is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story, 2
在您链接到的 the doc page 中,Iris 数据集有一个名为 'Name'
的列。当你打电话
andrews_curves(data, 'Name')
data
的行按 Name
的值分组。这就是 Iris 的原因
数据集,你会得到三种不同颜色的线条。
在您的数据集中,您有三列:A
、B
、C
。要在 df
上调用 andrews_curves
,您首先需要确定要作为分组依据的值。例如,如果它是 C
列的值,则调用
andrews_curves(data, 'C')
另一方面,如果您想按列名分组、A
、B
、C
,则
首先融化您的 DataFrame 以将其从宽格式转换为长格式,然后
然后在 variable
列(保存值
每行 A
、B
或 C
):
import numpy as np
import pandas as pd
import pandas.plotting as pdplt
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 1000)
df = pd.DataFrame({'A': np.sin(x**2)/x,
'B': np.sin(x)*np.exp(-x),
'C': np.cos(x)*x})
pdplt.andrews_curves(pd.melt(df), 'variable')
plt.show()
产量
我有以下 pandas 数据框:
df = pd.read_csv('path/file/file.csv',
header=0, sep=',', names=['PhraseId', 'SentenceId', 'Phrase', 'Sentiment'])
我想用 andrew_curves 打印它 我尝试了以下方法:
andrews_curves(df, 'Name')
知道如何绘制这个吗?这是 csv 的内容:
PhraseId, SentenceId, Phrase, Sentiment
1, 1, A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., 1
2, 1, A series of escapades demonstrating the adage that what is good for the goose, 2
3, 1, A series, 2
4, 1, A, 2
5, 1, series, 2
6, 1, of escapades demonstrating the adage that what is good for the goose, 2
7, 1, of, 2
8, 1, escapades demonstrating the adage that what is good for the goose, 2
9, 1, escapades, 2
10, 1, demonstrating the adage that what is good for the goose, 2
11, 1, demonstrating the adage, 2
12, 1, demonstrating, 2
13, 1, the adage, 2
14, 1, the, 2
15, 1, adage, 2
16, 1, that what is good for the goose, 2
17, 1, that, 2
18, 1, what is good for the goose, 2
19, 1, what, 2
20, 1, is good for the goose, 2
21, 1, is, 2
22, 1, good for the goose, 3
23, 1, good, 3
24, 1, for the goose, 2
25, 1, for, 2
26, 1, the goose, 2
27, 1, goose, 2
28, 1, is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., 2
29, 1, is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story, 2
在您链接到的 the doc page 中,Iris 数据集有一个名为 'Name'
的列。当你打电话
andrews_curves(data, 'Name')
data
的行按 Name
的值分组。这就是 Iris 的原因
数据集,你会得到三种不同颜色的线条。
在您的数据集中,您有三列:A
、B
、C
。要在 df
上调用 andrews_curves
,您首先需要确定要作为分组依据的值。例如,如果它是 C
列的值,则调用
andrews_curves(data, 'C')
另一方面,如果您想按列名分组、A
、B
、C
,则
首先融化您的 DataFrame 以将其从宽格式转换为长格式,然后
然后在 variable
列(保存值
每行 A
、B
或 C
):
import numpy as np
import pandas as pd
import pandas.plotting as pdplt
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 1000)
df = pd.DataFrame({'A': np.sin(x**2)/x,
'B': np.sin(x)*np.exp(-x),
'C': np.cos(x)*x})
pdplt.andrews_curves(pd.melt(df), 'variable')
plt.show()
产量