谓词和量词。 (离散数学)
Predicates and quantifiers. (Discrete mathematics)
我想确定我的回答是真实的。
问题是:
设 I (x) 为语句“x 具有 Internet 连接”
C(x, y) 是语句“x 和 y 聊过
互联网”,其中变量 x 和 y 的定义域
由 class 中的所有学生组成。使用量词来
表达这些陈述中的每一个:
** 您 class 中正好有一名学生有互联网连接。
我的答案是:∃x∀y(x=y ↔ I(y)).
是的,它有效。
另一种方法是尝试分两步进行,然后进行连接。
第一个是 "someone has internet" exists X. I(x)
,第二个是 "if two people have internet then they are the same person" forall x,y. I(x) and I(y) -> x = y
。
这种方式 'simpler' 因为量词深度较少。你的量词深度为二,而我的只有一个。
但是你的更优雅,所以YMMV。
我想确定我的回答是真实的。
问题是:
设 I (x) 为语句“x 具有 Internet 连接” C(x, y) 是语句“x 和 y 聊过 互联网”,其中变量 x 和 y 的定义域 由 class 中的所有学生组成。使用量词来 表达这些陈述中的每一个: ** 您 class 中正好有一名学生有互联网连接。
我的答案是:∃x∀y(x=y ↔ I(y)).
是的,它有效。
另一种方法是尝试分两步进行,然后进行连接。
第一个是 "someone has internet" exists X. I(x)
,第二个是 "if two people have internet then they are the same person" forall x,y. I(x) and I(y) -> x = y
。
这种方式 'simpler' 因为量词深度较少。你的量词深度为二,而我的只有一个。
但是你的更优雅,所以YMMV。