Boost.Proto : Proto 转换是否可以评估矩阵和向量的混合表达式?
Boost.Proto : Is it possible for Proto transforms to evaluate a mixture expression of matrix & vector?
现在我正在尝试教授 g++ 编译器线性代数,以便 g++ 可以重写像 (matrix * vector)(index)
这样的表达式作为计算表达式的循环。基本上这就是我对 the last article in the series "Expressive C++ 的下一篇文章的期望。最后一篇文章解释了如何制作一个 EDSL 来添加向量,所以我写了另一个 EDSL 来将一个矩阵乘以一个向量。
但是当我自己的矩阵和向量类的Proto域名称作为第一个宏参数传递时,无法编译BOOST_PROTO_DEFINE_OPERATORS宏。
所以我想知道 Proto 转换是否有可能评估矩阵和向量对象的混合表达式。好像没有这样的示例代码可以编译,Proto用户指南1.57.0中"Adapting Existing Types to Proto"中的示例代码不完整,虽然它是关于如何将现有的矩阵和向量类型适配到Proto。
我很茫然..你能给我一些建议或提示吗?
这是我的源代码。如果您能告诉我如何修复它,我将不胜感激:
#include <iostream>
#include <boost/proto/proto.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
namespace LinAlg {
class Vector;
class Matrix;
// Functor for lazy evaluation
struct ElmOfMatVecMult;
// The grammar for an expression like ( matrix * vector )(index)
struct MatVecMultElmGrammar : proto::or_<
proto::when< proto::multiplies< Matrix, Vector>,
proto::_make_function( ElmOfMatVecMult,
proto::_left, proto::_right,
proto::_state) >
> {};
// The grammar for a vector expression
// ( Now I consider just one form : matrix * vector . )
struct VecExprGrammar : proto::or_<
proto::when< proto::function< MatVecMultElmGrammar, proto::_>,
MatVecMultElmGrammar( proto::_left, proto::_right) >,
proto::multiplies< Matrix, Vector>
> {};
template<typename E> struct Expr;
// The above grammar is associated with this domain.
struct Domain
: proto::domain<proto::generator<Expr>, VecExprGrammar>
{};
// A wrapper template for linear algebraic expressions
// including matrices and vectors
template<typename ExprType>
struct Expr
: proto::extends<ExprType, Expr<ExprType>, Domain>
{
explicit Expr(const ExprType& e)
: proto::extends<ExprType, Expr<ExprType>, Domain>(e)
{}
};
// Testing if data in an heap array can be a vector object
class Vector {
private:
int sz;
double* data;
public:
template <typename Sig> struct result;
template <typename This, typename T>
struct result< This(T) > { typedef double type; };
typedef double result_type;
explicit Vector(int sz_ = 1, double iniVal = 0.0) :
sz( sz_), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = iniVal;
std::cout << "Created" << std::endl;
}
Vector(const Vector& vec) :
sz( vec.sz), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = vec.data[i];
std::cout << "Copied! " << std::endl;
}
~Vector() {
delete [] data;
std::cout << "Deleted" << std::endl;
}
// accessing to an element of this vector
double& operator()(int i) { return data[i]; }
const double& operator()(int i) const { return data[i]; }
};
// Testing if data in an heap array can be a matrix object
class Matrix
{
private:
int rowSz, colSz;
double* data;
double** m;
public:
template <typename Signature> struct result;
template <typename This, typename T>
struct result< This(T,T) > { typedef double type; };
explicit Matrix(int rowSize = 1, int columnSize =1,
double iniVal = 0.0) :
rowSz( rowSize), colSz(columnSize),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++) m[ri][ci] = iniVal;
std::cout << "Created" << std::endl;
}
Matrix(const Matrix& mat) :
rowSz( mat.rowSz), colSz( mat.colSz),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++)
m[ri][ci] = mat.m[ri][ci];
std::cout << "Copied! " << std::endl;
}
~Matrix()
{
delete [] m;
delete [] data;
std::cout << "Deleted" << std::endl;
}
int rowSize() const { return rowSz; }
int columnSize() const { return colSz; }
// accesing to a vector element
double& operator()(int ri, int ci) { return m[ri][ci]; }
const double& operator()(int ri, int ci) const { return m[ri][ci]; }
};
// An expression like ( matrix * vector )(index) is transformed
// into the loop for calculating the dot product between
// the vector and matrix.
struct ElmOfMatVecMult
{
double operator()( Matrix const& mat, Vector const& vec,
int index) const
{
double elm = 0.0;
for (int ci =0; ci < mat.columnSize(); ci++)
elm += mat(index, ci) * vec(ci);
return elm;
}
};
// Define a trait for detecting linear algebraic terminals, to be used
// by the BOOST_PROTO_DEFINE_OPERATORS macro below.
template<typename> struct IsExpr : mpl::false_ {};
template<> struct IsExpr< Vector> : mpl::true_ {};
template<> struct IsExpr< Matrix> : mpl::true_ {};
// This defines all the overloads to make expressions involving
// Vector and Matrix objects to build Proto's expression templates.
BOOST_PROTO_DEFINE_OPERATORS(IsExpr, Domain)
}
int main()
{
using namespace LinAlg;
proto::_default<> trans;
Matrix mat( 3, 3);
Vector vec1(3);
mat(0,0) = 1.00; mat(0,1) = 1.01; mat(0,2) = 1.02;
mat(1,0) = 1.10; mat(1,1) = 1.11; mat(1,2) = 1.12;
mat(2,0) = 1.20; mat(2,1) = 1.21; mat(2,2) = 1.22;
vec1(0) = 1.0;
vec1(1) = 2.0;
vec1(2) = 3.0;
proto::display_expr( ( mat * vec1)(2) );
proto::display_expr( VecExprGrammar()( ( mat * vec1)(2) );
double vecElm = trans( VecExprGrammar()( ( mat * vec1)(2) );
return 0;
}
我以某种方式确认我的问题的答案是 'yes'。让我的源代码工作的技巧是定义一个活动语法,用于用 MatVecMult
对象替换矩阵 * 向量,并将 MatVecMult
定义为 proto::callable
对象,用于制作惰性评估函子, LazyMatVecMult
.当使用 operator()(int index)
调用此 LazyMatVecMult
实例时,它会计算矩阵的第 index 行与向量的点积。
(很抱歉自己回答我的问题。但我认为,关于如何为向量和矩阵表达式制作基于 Proto 的 EDSL,我并不是唯一偶然发现这块石头的人。)
此源代码已确认适用于 g++ 4.8.4 :
#include <iostream>
#include <boost/proto/proto.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
namespace LinAlg {
class Vector;
class Matrix;
// Callable transform object to make a proto exression
// for lazily evaluationg a. multiplication
struct MatVecMult;
// The grammar for the multiplication of a matrix and a vector
struct MatVecMultGrammar : proto::or_<
proto::when<
proto::multiplies< proto::terminal< Matrix> ,
proto::terminal< Vector> >,
MatVecMult( proto::_value( proto::_left),
proto::_value( proto::_right) )
>
> {};
// The grammar for a vector expression
// ( Now I consider just one form : matrix * vector . )
struct VecExprGrammar : proto::or_<
proto::function< MatVecMultGrammar, proto::_>,
MatVecMultGrammar
> {};
// A wrapper for a linear algebraic expression
template<typename E> struct Expr;
// The above grammar is associated with this domain.
struct Domain
: proto::domain<proto::generator<Expr>, VecExprGrammar>
{};
// A wrapper template for linear algebraic expressions
// including matrices and vectors
template<typename ExprType>
struct Expr
: proto::extends<ExprType, Expr<ExprType>, Domain>
{
/* typedef double result_type; */
explicit Expr(const ExprType& e)
: proto::extends<ExprType, Expr<ExprType>, Domain>(e)
{}
};
// Testing if data in an heap array can be a vector object
class Vector {
private:
int sz;
double* data;
public:
explicit Vector(int sz_ = 1, double iniVal = 0.0) :
sz( sz_), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = iniVal;
std::cout << "Created" << std::endl;
}
Vector(const Vector& vec) :
sz( vec.sz), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = vec.data[i];
std::cout << "Copied! " << std::endl;
}
~Vector() {
delete [] data;
std::cout << "Deleted" << std::endl;
}
// accessing to an element of this vector
double& operator()(int i) { return data[i]; }
const double& operator()(int i) const { return data[i]; }
};
// Testing if data in an heap array can be a matrix object
class Matrix
{
private:
int rowSz, colSz;
double* data;
double** m;
public:
explicit Matrix(int rowSize = 1, int columnSize =1,
double iniVal = 0.0) :
rowSz( rowSize), colSz(columnSize),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++) m[ri][ci] = iniVal;
std::cout << "Created" << std::endl;
}
Matrix(const Matrix& mat) :
rowSz( mat.rowSz), colSz( mat.colSz),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++)
m[ri][ci] = mat.m[ri][ci];
std::cout << "Copied! " << std::endl;
}
~Matrix()
{
delete [] m;
delete [] data;
std::cout << "Deleted" << std::endl;
}
int rowSize() const { return rowSz; }
int columnSize() const { return colSz; }
// accesing to a vector element
double& operator()(int ri, int ci) { return m[ri][ci]; }
const double& operator()(int ri, int ci) const { return m[ri][ci]; }
};
// Lazy function object for evaluating an element of
// the resultant vector from the multiplication of
// a matrix and vector objects.
//
// An expression like ( matrix * vector )(index) is transformed
// into the loop for calculating the dot product between
// the index'th row of the matrix and the vector.
struct LazyMatVecMult
{
Matrix const& m;
Vector const& v;
int mColSz;
typedef double result_type;
// typedef mpl::int_<1> proto_arity;
explicit LazyMatVecMult(Matrix const& mat, Vector const& vec) :
m( mat), v( vec), mColSz(mat.rowSize()) {}
LazyMatVecMult(LazyMatVecMult const& lazy) :
m(lazy.m), v(lazy.v), mColSz(lazy.mColSz) {}
result_type operator()(int index) const
{
result_type elm = 0.0;
for (int ci =0; ci < mColSz; ci++)
elm += m(index, ci) * v(ci);
return elm;
}
};
// Callable transform object to make the lazy functor
// a proto exression for lazily evaluationg the multiplication
// of a matrix and a vector .
struct MatVecMult : proto::callable
{
typedef proto::terminal< LazyMatVecMult >::type result_type;
result_type
operator()( Matrix const& mat, Vector const& vec) const
{
return proto::as_expr( LazyMatVecMult(mat, vec) );
}
};
// Define a trait for detecting linear algebraic terminals, to be used
// by the BOOST_PROTO_DEFINE_OPERATORS macro below.
template<typename> struct IsExpr : mpl::false_ {};
template<> struct IsExpr< Vector> : mpl::true_ {};
template<> struct IsExpr< Matrix> : mpl::true_ {};
// template<> struct IsExpr< MatVecMult> : mpl::true_ {};
template<> struct IsExpr< LazyMatVecMult> : mpl::true_ {};
// This defines all the overloads to make expressions involving
// Vector and Matrix objects to build Proto's expression templates.
BOOST_PROTO_DEFINE_OPERATORS(IsExpr, Domain)
// BOOST_PROTO_DEFINE_OPERATORS(IsExpr, proto::default_domain)
}
int main()
{
using namespace LinAlg;
proto::_default<> trans;
Matrix mat( 3, 3);
Vector vec1(3), vec2(3);
mat(0,0) = 1.00; mat(0,1) = 1.01; mat(0,2) = 1.02;
mat(1,0) = 1.10; mat(1,1) = 1.11; mat(1,2) = 1.12;
mat(2,0) = 1.20; mat(2,1) = 1.21; mat(2,2) = 1.22;
vec1(0) = 1.0;
vec1(1) = 2.0;
vec1(2) = 3.0;
std::cout << " mat * vec1" << std::endl;
proto::display_expr( mat * vec1 );
std::cout << " MatVecMultGrammar()( mat * vec1) " << std::endl;
proto::display_expr( MatVecMultGrammar()( mat * vec1) );
std::cout << "( mat * vec1)(2)" << std::endl;
proto::display_expr( ( mat * vec1)(2) );
std::cout << "VecExprGrammar()( ( mat * vec1)(2) )" << std::endl;
proto::display_expr( VecExprGrammar()( ( mat * vec1)(2) ) );
double elm2 = trans( VecExprGrammar()( ( mat * vec1)(2) ) );
std::cout << "( mat * vec1)(2) = " << elm2 << std::endl;
return 0;
}
现在我正在尝试教授 g++ 编译器线性代数,以便 g++ 可以重写像 (matrix * vector)(index)
这样的表达式作为计算表达式的循环。基本上这就是我对 the last article in the series "Expressive C++ 的下一篇文章的期望。最后一篇文章解释了如何制作一个 EDSL 来添加向量,所以我写了另一个 EDSL 来将一个矩阵乘以一个向量。
但是当我自己的矩阵和向量类的Proto域名称作为第一个宏参数传递时,无法编译BOOST_PROTO_DEFINE_OPERATORS宏。
所以我想知道 Proto 转换是否有可能评估矩阵和向量对象的混合表达式。好像没有这样的示例代码可以编译,Proto用户指南1.57.0中"Adapting Existing Types to Proto"中的示例代码不完整,虽然它是关于如何将现有的矩阵和向量类型适配到Proto。
我很茫然..你能给我一些建议或提示吗?
这是我的源代码。如果您能告诉我如何修复它,我将不胜感激:
#include <iostream>
#include <boost/proto/proto.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
namespace LinAlg {
class Vector;
class Matrix;
// Functor for lazy evaluation
struct ElmOfMatVecMult;
// The grammar for an expression like ( matrix * vector )(index)
struct MatVecMultElmGrammar : proto::or_<
proto::when< proto::multiplies< Matrix, Vector>,
proto::_make_function( ElmOfMatVecMult,
proto::_left, proto::_right,
proto::_state) >
> {};
// The grammar for a vector expression
// ( Now I consider just one form : matrix * vector . )
struct VecExprGrammar : proto::or_<
proto::when< proto::function< MatVecMultElmGrammar, proto::_>,
MatVecMultElmGrammar( proto::_left, proto::_right) >,
proto::multiplies< Matrix, Vector>
> {};
template<typename E> struct Expr;
// The above grammar is associated with this domain.
struct Domain
: proto::domain<proto::generator<Expr>, VecExprGrammar>
{};
// A wrapper template for linear algebraic expressions
// including matrices and vectors
template<typename ExprType>
struct Expr
: proto::extends<ExprType, Expr<ExprType>, Domain>
{
explicit Expr(const ExprType& e)
: proto::extends<ExprType, Expr<ExprType>, Domain>(e)
{}
};
// Testing if data in an heap array can be a vector object
class Vector {
private:
int sz;
double* data;
public:
template <typename Sig> struct result;
template <typename This, typename T>
struct result< This(T) > { typedef double type; };
typedef double result_type;
explicit Vector(int sz_ = 1, double iniVal = 0.0) :
sz( sz_), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = iniVal;
std::cout << "Created" << std::endl;
}
Vector(const Vector& vec) :
sz( vec.sz), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = vec.data[i];
std::cout << "Copied! " << std::endl;
}
~Vector() {
delete [] data;
std::cout << "Deleted" << std::endl;
}
// accessing to an element of this vector
double& operator()(int i) { return data[i]; }
const double& operator()(int i) const { return data[i]; }
};
// Testing if data in an heap array can be a matrix object
class Matrix
{
private:
int rowSz, colSz;
double* data;
double** m;
public:
template <typename Signature> struct result;
template <typename This, typename T>
struct result< This(T,T) > { typedef double type; };
explicit Matrix(int rowSize = 1, int columnSize =1,
double iniVal = 0.0) :
rowSz( rowSize), colSz(columnSize),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++) m[ri][ci] = iniVal;
std::cout << "Created" << std::endl;
}
Matrix(const Matrix& mat) :
rowSz( mat.rowSz), colSz( mat.colSz),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++)
m[ri][ci] = mat.m[ri][ci];
std::cout << "Copied! " << std::endl;
}
~Matrix()
{
delete [] m;
delete [] data;
std::cout << "Deleted" << std::endl;
}
int rowSize() const { return rowSz; }
int columnSize() const { return colSz; }
// accesing to a vector element
double& operator()(int ri, int ci) { return m[ri][ci]; }
const double& operator()(int ri, int ci) const { return m[ri][ci]; }
};
// An expression like ( matrix * vector )(index) is transformed
// into the loop for calculating the dot product between
// the vector and matrix.
struct ElmOfMatVecMult
{
double operator()( Matrix const& mat, Vector const& vec,
int index) const
{
double elm = 0.0;
for (int ci =0; ci < mat.columnSize(); ci++)
elm += mat(index, ci) * vec(ci);
return elm;
}
};
// Define a trait for detecting linear algebraic terminals, to be used
// by the BOOST_PROTO_DEFINE_OPERATORS macro below.
template<typename> struct IsExpr : mpl::false_ {};
template<> struct IsExpr< Vector> : mpl::true_ {};
template<> struct IsExpr< Matrix> : mpl::true_ {};
// This defines all the overloads to make expressions involving
// Vector and Matrix objects to build Proto's expression templates.
BOOST_PROTO_DEFINE_OPERATORS(IsExpr, Domain)
}
int main()
{
using namespace LinAlg;
proto::_default<> trans;
Matrix mat( 3, 3);
Vector vec1(3);
mat(0,0) = 1.00; mat(0,1) = 1.01; mat(0,2) = 1.02;
mat(1,0) = 1.10; mat(1,1) = 1.11; mat(1,2) = 1.12;
mat(2,0) = 1.20; mat(2,1) = 1.21; mat(2,2) = 1.22;
vec1(0) = 1.0;
vec1(1) = 2.0;
vec1(2) = 3.0;
proto::display_expr( ( mat * vec1)(2) );
proto::display_expr( VecExprGrammar()( ( mat * vec1)(2) );
double vecElm = trans( VecExprGrammar()( ( mat * vec1)(2) );
return 0;
}
我以某种方式确认我的问题的答案是 'yes'。让我的源代码工作的技巧是定义一个活动语法,用于用 MatVecMult
对象替换矩阵 * 向量,并将 MatVecMult
定义为 proto::callable
对象,用于制作惰性评估函子, LazyMatVecMult
.当使用 operator()(int index)
调用此 LazyMatVecMult
实例时,它会计算矩阵的第 index 行与向量的点积。
(很抱歉自己回答我的问题。但我认为,关于如何为向量和矩阵表达式制作基于 Proto 的 EDSL,我并不是唯一偶然发现这块石头的人。)
此源代码已确认适用于 g++ 4.8.4 :
#include <iostream>
#include <boost/proto/proto.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
namespace LinAlg {
class Vector;
class Matrix;
// Callable transform object to make a proto exression
// for lazily evaluationg a. multiplication
struct MatVecMult;
// The grammar for the multiplication of a matrix and a vector
struct MatVecMultGrammar : proto::or_<
proto::when<
proto::multiplies< proto::terminal< Matrix> ,
proto::terminal< Vector> >,
MatVecMult( proto::_value( proto::_left),
proto::_value( proto::_right) )
>
> {};
// The grammar for a vector expression
// ( Now I consider just one form : matrix * vector . )
struct VecExprGrammar : proto::or_<
proto::function< MatVecMultGrammar, proto::_>,
MatVecMultGrammar
> {};
// A wrapper for a linear algebraic expression
template<typename E> struct Expr;
// The above grammar is associated with this domain.
struct Domain
: proto::domain<proto::generator<Expr>, VecExprGrammar>
{};
// A wrapper template for linear algebraic expressions
// including matrices and vectors
template<typename ExprType>
struct Expr
: proto::extends<ExprType, Expr<ExprType>, Domain>
{
/* typedef double result_type; */
explicit Expr(const ExprType& e)
: proto::extends<ExprType, Expr<ExprType>, Domain>(e)
{}
};
// Testing if data in an heap array can be a vector object
class Vector {
private:
int sz;
double* data;
public:
explicit Vector(int sz_ = 1, double iniVal = 0.0) :
sz( sz_), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = iniVal;
std::cout << "Created" << std::endl;
}
Vector(const Vector& vec) :
sz( vec.sz), data( new double[sz] ) {
for (int i = 0; i < sz; i++) data[i] = vec.data[i];
std::cout << "Copied! " << std::endl;
}
~Vector() {
delete [] data;
std::cout << "Deleted" << std::endl;
}
// accessing to an element of this vector
double& operator()(int i) { return data[i]; }
const double& operator()(int i) const { return data[i]; }
};
// Testing if data in an heap array can be a matrix object
class Matrix
{
private:
int rowSz, colSz;
double* data;
double** m;
public:
explicit Matrix(int rowSize = 1, int columnSize =1,
double iniVal = 0.0) :
rowSz( rowSize), colSz(columnSize),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++) m[ri][ci] = iniVal;
std::cout << "Created" << std::endl;
}
Matrix(const Matrix& mat) :
rowSz( mat.rowSz), colSz( mat.colSz),
data( new double[rowSz*colSz] ), m( new double*[rowSz])
{
for (int i = 0; i < rowSz; i++) m[i] = data + i*colSz;
for (int ri = 0; ri < rowSz; ri++)
for (int ci = 0; ci < colSz; ci++)
m[ri][ci] = mat.m[ri][ci];
std::cout << "Copied! " << std::endl;
}
~Matrix()
{
delete [] m;
delete [] data;
std::cout << "Deleted" << std::endl;
}
int rowSize() const { return rowSz; }
int columnSize() const { return colSz; }
// accesing to a vector element
double& operator()(int ri, int ci) { return m[ri][ci]; }
const double& operator()(int ri, int ci) const { return m[ri][ci]; }
};
// Lazy function object for evaluating an element of
// the resultant vector from the multiplication of
// a matrix and vector objects.
//
// An expression like ( matrix * vector )(index) is transformed
// into the loop for calculating the dot product between
// the index'th row of the matrix and the vector.
struct LazyMatVecMult
{
Matrix const& m;
Vector const& v;
int mColSz;
typedef double result_type;
// typedef mpl::int_<1> proto_arity;
explicit LazyMatVecMult(Matrix const& mat, Vector const& vec) :
m( mat), v( vec), mColSz(mat.rowSize()) {}
LazyMatVecMult(LazyMatVecMult const& lazy) :
m(lazy.m), v(lazy.v), mColSz(lazy.mColSz) {}
result_type operator()(int index) const
{
result_type elm = 0.0;
for (int ci =0; ci < mColSz; ci++)
elm += m(index, ci) * v(ci);
return elm;
}
};
// Callable transform object to make the lazy functor
// a proto exression for lazily evaluationg the multiplication
// of a matrix and a vector .
struct MatVecMult : proto::callable
{
typedef proto::terminal< LazyMatVecMult >::type result_type;
result_type
operator()( Matrix const& mat, Vector const& vec) const
{
return proto::as_expr( LazyMatVecMult(mat, vec) );
}
};
// Define a trait for detecting linear algebraic terminals, to be used
// by the BOOST_PROTO_DEFINE_OPERATORS macro below.
template<typename> struct IsExpr : mpl::false_ {};
template<> struct IsExpr< Vector> : mpl::true_ {};
template<> struct IsExpr< Matrix> : mpl::true_ {};
// template<> struct IsExpr< MatVecMult> : mpl::true_ {};
template<> struct IsExpr< LazyMatVecMult> : mpl::true_ {};
// This defines all the overloads to make expressions involving
// Vector and Matrix objects to build Proto's expression templates.
BOOST_PROTO_DEFINE_OPERATORS(IsExpr, Domain)
// BOOST_PROTO_DEFINE_OPERATORS(IsExpr, proto::default_domain)
}
int main()
{
using namespace LinAlg;
proto::_default<> trans;
Matrix mat( 3, 3);
Vector vec1(3), vec2(3);
mat(0,0) = 1.00; mat(0,1) = 1.01; mat(0,2) = 1.02;
mat(1,0) = 1.10; mat(1,1) = 1.11; mat(1,2) = 1.12;
mat(2,0) = 1.20; mat(2,1) = 1.21; mat(2,2) = 1.22;
vec1(0) = 1.0;
vec1(1) = 2.0;
vec1(2) = 3.0;
std::cout << " mat * vec1" << std::endl;
proto::display_expr( mat * vec1 );
std::cout << " MatVecMultGrammar()( mat * vec1) " << std::endl;
proto::display_expr( MatVecMultGrammar()( mat * vec1) );
std::cout << "( mat * vec1)(2)" << std::endl;
proto::display_expr( ( mat * vec1)(2) );
std::cout << "VecExprGrammar()( ( mat * vec1)(2) )" << std::endl;
proto::display_expr( VecExprGrammar()( ( mat * vec1)(2) ) );
double elm2 = trans( VecExprGrammar()( ( mat * vec1)(2) ) );
std::cout << "( mat * vec1)(2) = " << elm2 << std::endl;
return 0;
}