Linux 中 crypt 函数的时间复杂度是多少?

What is the time complexity of crypt function in Linux?

在unix中描述如下的crypt函数用于认证:

char *crypt(const char *key, const char *salt);

假设我有key(长度n)和salt(长度m),调用这个函数的时间复杂度(算法顺序)是多少?

来自 crypt 的手册页:

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This string is used to perturb the algorithm in one of 4096 different ways.

By taking the lowest 7 bits of each of the first eight characters of the key, a 56-bit key is obtained.

然后使用如此获得的密钥来加密常量字符串(使用经过调整的 DES 算法),这需要恒定的时间。因此,该函数对于任何有效参数都有常量 运行-time。请注意,此 t运行cating 会导致非常弱的密码。

正如 melpomene, some implementations provide an extension to the crypt function that allow selecting a more secure mode. For the following, I will assume you are using the crypt function from the GNU C library. The manual 所说:

For the MD5-based algorithm, the salt should consist of the string $, followed by up to 8 characters, terminated by either another $ or the end of the string. The result of crypt will be the salt, followed by a $ if the salt didn't end with one, followed by 22 characters from the alphabet ./0-9A-Za-z, up to 34 characters total. Every character in the key is significant.

由于 salt 的长度由常数固定,并且密码哈希函数的时间复杂度与输入的长度呈线性关系,因此 crypt 函数在 key.

中是线性的

我的 glibc 版本也支持更安全的 SHA-256 (selected via $) and SHA-512 (selected via $) cryptographic hash functions in addition to MD5。它们的输入长度也具有线性时间复杂度。

由于我无法理解我现在实际应该做的任务,我已经安排了各种 crypt 方法来支持上述分析。这是结果。

绘制的是 crypt 函数中花费的执行时间与 key 字符串的长度的关系。每个数据系列都覆盖有线性回归,但 DES 除外,在 DES 中绘制的是平均值。我很惊讶 SHA-512 实际上 比 SHA-256 更快

用于基准测试的代码在此处 (benchmark.c)。

#define _GNU_SOURCE  /* crypt */

#include <errno.h>   /* errno, strerror */
#include <stdio.h>   /* FILE, fopen, fclose, fprintf */
#include <stdlib.h>  /* EXIT_{SUCCESS,FAILURE}, malloc, free, [s]rand */
#include <string.h>  /* size_t, strlen */
#include <assert.h>  /* assert */
#include <time.h>    /* CLOCKS_PER_SEC, clock_t, clock */
#include <unistd.h>  /* crypt */

/* Barrier to stop the compiler from re-ordering instructions. */
#define COMPILER_BARRIER asm volatile("" ::: "memory")

/* First character in the printable ASCII range. */
static const char ascii_first = ' ';

/* Last character in the printable ASCII range. */
static const char ascii_last = '~';

/*
  Benchmark the time it takes to crypt(3) a key of length *keylen* with salt
  *salt*.  The result is written to the stream *ostr* so its computation cannot
  be optimized away.
*/
static clock_t
measure_crypt(const size_t keylen, const char *const salt, FILE *const ostr)
{
  char * key;
  const char * passwd;
  clock_t t1;
  clock_t t2;
  size_t i;
  key = malloc(keylen + 1);
  if (key == NULL)
    return ((clock_t) -1);
  /*
    Generate a random key.  The randomness is extremely poor; never do this in
    cryptographic applications!
  */
  for (i = 0; i < keylen; ++i)
    key[i] = ascii_first + rand() % (ascii_last - ascii_first);
  key[keylen] = '[=10=]';
  assert(strlen(key) == keylen);
  COMPILER_BARRIER;
  t1 = clock();
  COMPILER_BARRIER;
  passwd = crypt(key, salt);
  COMPILER_BARRIER;
  t2 = clock();
  COMPILER_BARRIER;
  fprintf(ostr, "%s\n", passwd);
  free(key);
  return t2 - t1;
}

/*
  The program can be called with zero or one arguments.  The argument, if
  given, will be used as salt.
*/
int
main(const int argc, const char *const *const argv)
{
  const size_t keymax = 2000;
  const size_t keystep = 100;
  const char * salt = "..";  /* default salt */
  FILE * devnull = NULL;  /* redirect noise to black hole */
  int status = EXIT_SUCCESS;
  size_t keylen;
  if (argc > 1)
    salt = argv[1];
  devnull = fopen("/dev/null", "r");
  if (devnull == NULL)
    goto label_catch;
  srand((unsigned) clock());
  for (keylen = 0; keylen <= keymax; keylen += keystep)
    {
      clock_t ticks;
      double millis;
      ticks= measure_crypt(keylen, salt, devnull);
      if (ticks < 0)
        goto label_catch;
      millis = 1.0E3 * ticks / CLOCKS_PER_SEC;
      fprintf(stdout, "%16zu %e\n", keylen, millis);
    }
  goto label_finally;
 label_catch:
  status = EXIT_FAILURE;
  fprintf(stderr, "error: %s\n", strerror(errno));
 label_finally:
  if (devnull != NULL)
    fclose(devnull);
  return status;
}

用于回归和绘图的 Gnuplot 脚本在这里 (plot.gplt)。

set terminal 'svg'
set output 'timings.svg'

set xrange [0 : *]
set yrange [0 : *]

set key top left

set title 'crypt(3) benchmarks'
set xlabel 'key length / bytes'
set ylabel 'computation time / milliseconds'

des(x) = a_des
md5(x) = a_md5 + b_md5 * x
sha256(x) = a_sha256 + b_sha256 * x
sha512(x) = a_sha512 + b_sha512 * x

fit des(x) 'timings.des' via a_des
fit md5(x) 'timings.md5' via a_md5, b_md5
fit sha256(x) 'timings.sha256' via a_sha256, b_sha256
fit sha512(x) 'timings.sha512' via a_sha512, b_sha512

plot des(x)           w l notitle     lc '#75507b' lt 1 lw 2.5,     \
     'timings.des'    w p t 'DES'     lc '#5c3566' pt 7 ps 0.8,     \
     md5(x)           w l notitle     lc '#cc0000' lt 1 lw 2.5,     \
     'timings.md5'    w p t 'MD5'     lc '#a40000' pt 7 ps 0.8,     \
     sha256(x)        w l notitle     lc '#73d216' lt 1 lw 2.5,     \
     'timings.sha256' w p t 'SHA-256' lc '#4e9a06' pt 7 ps 0.8,     \
     sha512(x)        w l notitle     lc '#3465a4' lt 1 lw 2.5,     \
     'timings.sha512' w p t 'SHA-512' lc '#204a87' pt 7 ps 0.8

最后,Makefile 用于将所有内容连接在一起 (GNUmakefile)。

CC := gcc
CPPFLAGS :=
CFLAGS := -Wall -O2
LDFLAGS :=
LIBS := -lcrypt

all: benchmark timings.svg timings.png

benchmark: benchmark.o
    ${CC} -o $@ ${CFLAGS} $^ ${LDFLAGS} ${LIBS}

benchmark.o: benchmark.c
    ${CC} -c ${CPPFLAGS} ${CFLAGS} $<

timings.svg: plot.gplt timings.des timings.md5 timings.sha256 timings.sha512
    gnuplot $<

timings.png: timings.svg
    convert $< $@

timings.des: benchmark
    ./$< '$(shell pwgen -ncs 2)' > $@

timings.md5: benchmark
    ./$< '$$$$(shell pwgen -ncs 8)' > $@

timings.sha256: benchmark
    ./$< '$$$$(shell pwgen -ncs 16)' > $@

timings.sha512: benchmark
    ./$< '$$$$(shell pwgen -ncs 16)' > $@

clean:
    rm -f benchmark benchmark.o fit.log $(wildcard *.o timings.*)

.PHONY: all clean