确定两个多项式相乘结果的项数

Determining the number of terms in the result of the multiplication of two polynomials

这是一个对多项式执行不同运算的 c++ 程序。在此程序中,multiplication() 函数存在逻辑问题。我无法计算出结果多项式中的项数,这是两个多项式相乘的结果。

该程序在大多数情况下给出了正确的乘法输出,但在少数情况下乘法未正确执行。以下是完整的程序。

#include<iostream>
using namespace std;

struct poly
{
    int coef, pow;
};

int k=0;
poly* getdata(poly *a,int n)
{
    for(int i=0; i<n; i++)
    {
        cout<<"\n Enter the coefficient and power of the term";
        cin>>a[i].coef>>a[i].pow;
    }
    return a;
}

poly* add(poly *c, poly *a, poly *b, int n1, int n2)
{
    int i=0, j=0;
    while(i<n1 && j<n2)
    {
        if(a[i].pow<b[j].pow)
        {
            c[k].pow = a[i].pow;
            c[k].coef = a[i].coef;
            i++;
            k++;
        }
        else if(a[i].pow == b[j].pow)
        {
            c[k].pow = a[i].pow;
            c[k].coef = a[i].coef+b[j].coef;
            i++; j++; k++;
        }
        else
            //(a[i].pow > b[j].pow)
        {
            c[k].pow = b[j].pow;
            c[k].coef = b[j].coef;
            j++; k++;
        }
    }
    while(i<n1)
    {
        c[k].pow = a[i].pow;
        c[k].coef = a[i].coef;
        i++;
        k++;
    }
    while(j<n2)
    {
        c[k].pow = b[j].pow;
        c[k].coef = b[j].coef;
        j++; k++;
    }
    return c;
}

void display(poly *p,int n)
{
    int i;
    cout<<"\n The polynomial is :-\n";
    for(i=0; i<n-1; i++)
    {
        cout<<p[i].coef<<"x^"<<p[i].pow<<"+";
    }
    cout<<p[i].coef<<"x^"<<p[i].pow;
    cout<<endl;
}

void multiplication(poly *c, poly *a, poly* b, int n1, int n2)
{
    int i, j;
    //int count = 0;

    for(i=0; i<n1*n2; i++)
    {
        c[i].coef = 0;
        c[i].pow = 0;
    }

    for(i=0; i<n1; i++)
    {
        for(j=0; j<n2; j++)
        {
            c[i+j].coef = a[i].coef*b[j].coef + c[i+j].coef;
            c[i+j].pow = a[i].pow + b[j].pow;
        }
    }
    //return count;
}

int main()
{
    poly a[10], b[10], c[10];
    poly *p, *q , *result;
    int n1, n2;
    cout<<"\n Enter the number of terms in polynomial 1 : ";
    cin>>n1;
    p = getdata(a,n1);
    display(p, n1);

    cout<<"\n Enter the number of terms in polynomial 2 : ";
    cin>>n2;
    q = getdata(b,n2);
    display(q, n2);

    result = add(c, a, b, n1, n2);
    cout<<"\n The Sum of the two polynomial is ";
    display(result, k);

    poly *mresult;
    mresult = new poly[n1+n2];
    multiplication(mresult, a, b, n1, n2);
    cout<<"\n The Multiplication of the two polynomials is :- ";
    display(mresult,n1+n2-1);

    return 0;
}

少数情况下输出:-

 Enter the number of terms in polynomial 1 : 2

 Enter the coefficient and power of the term1
1

 Enter the coefficient and power of the term3
9

 The polynomial is :-
1x^1+3x^9

 Enter the number of terms in polynomial 2 : 2

 Enter the coefficient and power of the term1
3

 Enter the coefficient and power of the term2
6

 The polynomial is :-
1x^3+2x^6

 The Sum of the two polynomial is 
 The polynomial is :-
1x^1+1x^3+2x^6+3x^9

 The Multiplication of the two polynomials is :- 
 The polynomial is :-
1x^4+5x^12+6x^15

这是正确的。 但是考虑这种情况:-

 Enter the number of terms in polynomial 1 : 2

 Enter the coefficient and power of the term1
1

 Enter the coefficient and power of the term3
9

 The polynomial is :-
1x^1+3x^9

 Enter the number of terms in polynomial 2 : 2

 Enter the coefficient and power of the term1
3

 Enter the coefficient and power of the term2
6

 The polynomial is :-
1x^3+2x^6

 The Sum of the two polynomial is 
 The polynomial is :-
1x^1+1x^3+2x^6+3x^9

 The Multiplication of the two polynomials is :- 
 The polynomial is :-
1x^4+5x^12+6x^15

这是错误的。这里的乘法应该是:- x^4+2x^7+3x^12+6x^15

我试过的逻辑很少,例如:-

int multiplication(poly *c, poly *a, poly* b, int n1, int n2)
{
    int i, j;
    int count = 0;

    for(i=0; i<n1*n2; i++)
    {
        c[i].coef = 0;
        c[i].pow = 0;
    }

    for(i=0; i<n1; i++)
    {
        for(j=0; j<n2; j++)
        {
            c[count].coef = a[i].coef*b[j].coef + c[count].coef;
            c[count].pow = a[i].pow + b[j].pow;
            if(c[count].pow != c[count-1].pow) count++;
        }
    }
    return count;
}

此函数返回多项式 c 中的项数。

注意:- c 是两个多项式 a 和 b 相乘的结果。

你想要更像这样的逻辑:

for(i=0; i<n1; i++)
{
    for(j=0; j<n2; j++)
    {
        int coef = a[i].coef * b[j].coef;
        int pow = a[i].pow + b[j].pow;
        count = add_term_to(c,count,coef,pow);
    }
}

现在您只需要实现 add_term_to() 以将具有相同幂的项组合起来。

fgx的多项式时,[=14的次数=]f×gf的次数加上g的次数.结果多项式的系数将是几对乘积的总和; 例如 乘以 (f_2 x^2 + f_1 x + f_0)(g_2 x^2 + g_1 x + g_0), x^2 的系数将为 f_2*g_0 + f_1*g_1 + f_0*g_2。您不会事先知道这些总和是否为零。二项式 (x+1)(x+1) 有三个非零项,但 (x+1)(x-1) 有两个,而 (x^2+1)(x^4+x^3) 有四个.

您可以通过对一个向量中的系数求和来高效地计算此多项式,该向量的索引是每一项的次数。您可以在转换回来时消除与零相同的项。