对数刻度 Matplotlib PatchCollection 颜色

Log Scale Matplotlib PatchCollection Colors

我有一个生成异构网格然后绘制补丁的函数。它指定每个 bin 的上下 xy 边缘。例如,单个 bin 由向量 [x0, x1, y0, y1] 定义。这些坐标转换为 bin:

    y1|---------|   
      |         |  
      |   bin   | 
      |         |
    y0|---------|
     x0         x1   

我有一个 (Nx4) mesh,其中包含 N 个带 [x0, x1, y0, y1] 列的容器。为了绘制数据,我执行以下操作:

z_plot  = z_stat / (dx * dy)     # ``z_stat`` is a calculated z-value 
z_plot  = z_plot / z_plot.max()  # for any given bin.

colors = mpl.cm.jet(z_plot)                   # Let fill data be white.
colors[z_stat == fill] = (1.0, 1.0, 1.0, 1.0) # fill=-9999.0, typically.

dx = mesh[:, 1] - mesh[:, 0]  # x1-x0
dy = mesh[:, 3] - mesh[:, 2]  # y1-y0.

xy = zip(mesh[:, 0], mesh[:, 2])  # (x,y) coordinates of each
                                  # bin's lower left corner.

patches = [mpl.patches.Rectangle(xy[i], dx[i], dy[i],         # I dont want
                                 ec=None, lw=0, fc=colors[i]) # visible edges.
            for i in range(mesh.shape[0])
          ]

patches = mpl.collections.PatchCollection(patches, match_original=True)
ax.add_collection(patches)

if z_stat is not None:

    kwargs = {'orientation': 'vertical'}
    cax, kw = _mpl.colorbar.make_axes_gridspec(plot_ax, **kwargs)

    cbar = mpl.colorbar.ColorbarBase(cax, cmap=_mpl.cm.jet)

这是结果:

This question does something similar, but without the logscale colors。我不知道如何让颜色符合记录比例。简单地将 mpl.colors.LogNorm() 之类的内容传递给 mpl.colorbar.ColorbarBase() 对我不起作用。

编辑 1:生成网格。

我有一个生成异构网格然后绘制补丁的函数。它以二维数组开头:

mesh = [[x00, x10, y00, y01], 
        [x10, x11, y10, y11], 
        ..., 
        [xN0, xN1, yN0, yN1]] 

我通读网格并将每个箱子分成四个:

#    y1|----|----|          x0, x1, y0, y1 = mesh[i, :]
#      | p4 | p3 |          xh = [x0 + .5*(x1-x0)]
#      |----|----| <- yh    yh = [y0 + .5 *(y1-y0)]
#      | p1 | p2 |
#    y0|----|----|
#     x0    ^-xh x1       

如果每个 [p1, p2, p3, p4] 的数据点数都超过最小数量(例如 50),我用这个数组替换行 [x0, x1, y0, y1]

        new_mesh = _np.array([[x0, xh, xh, x0],  # Define the 16 edges of  
                              [xh, x1, x1, xh],  # the 4 new bins that are  
                              [y0, y0, yh, yh],  # going to replace the bin 
                              [yh, yh, y1, y1]]  # originally defined by 
                            ).T                  # [x0, x1, y0, y1].

        if i == 0:  # 0th edge is a special case for indexing.

            mesh_h = _np.concatenate([new_mesh, mesh[1:]])

        else:

            mesh_h = _np.concatenate([mesh[:i], new_mesh, mesh[i+1:]])         


        mesh = mesh_h  # Set the new edges.

虽然我无法测试您的确切案例,因为您没有提供独立可运行的示例,但您应该(如果我对您所需行为的理解是正确的)能够完成您想要的,如下所示。

首先编辑这一行去掉手动设置的颜色和边缘信息:

patches = [mpl.patches.Rectangle(xy[i], dx[i], dy[i],         # I dont want
                                 ec=None, lw=0, fc=colors[i]) # visible edges.
            for i in range(mesh.shape[0])
          ]

它应该看起来像这样:

patches = [mpl.patches.Rectangle(xy[i], dx[i], dy[i]) for i in range(mesh.shape[0])]

然后将 LogNormjet 和您的边缘参数传递给 PatchCollection。这是因为我们希望 matplotlib 尽可能自己处理,以便它可以为您整理颜色。

patch_collection = mpl.collections.PatchCollection(patches,cmap=matplotlib.cm.jet, norm=matplotlib.colors.LogNorm(), lw=0)

然后使用set_array为PatchCollection提供z信息:

patch_collection.set_array(z_plot)

最后将集合添加到绘图中,创建颜色条并显示图形:

ax.add_collection(patch_collection)
plt.colorbar(patch_collection)

plt.show()

此答案主要基于 here 给出的示例,可能会有用。