从 randomForest 对象预测测试数据的结果
Predict the outcome of the testing data from a randomForest object
我有一个数据框df
dput(df)
structure(list(ID = c(4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5,
6, 6, 6, 6, 8, 8, 8, 9, 9), Y = c(2268.14043972082, 2147.62290922552,
2269.1387550775, 2247.31983098201, 1903.39138268307, 2174.78291538358,
2359.51909126411, 2488.39004804939, 212.851575751527, 461.398994384333,
567.150629704352, 781.775113821961, 918.303706148872, 1107.37695799186,
1160.80594193377, 1412.61328924168, 1689.48879626486, 685.154353165934,
574.088067465695, 650.30821636616, 494.185166497016, 436.312162090908
), P = c(1750.51986303926, 1614.11541634798, 951.847023338079,
1119.3682884872, 1112.38984390156, 1270.65773075982, 1234.72262170166,
1338.46096616983, 1198.95775346458, 1136.69287367165, 1265.46480803983,
1364.70149818063, 1112.37006707489, 1346.49240261316, 1740.56677791104,
1410.99217295647, 1693.18871380948, 275.447173420805, 396.449789014179,
251.609239829704, 215.432550271042, 55.5336257666349), A = c(49,
50, 51, 52, 53, 54, 55, 56, 1, 2, 3, 4, 5, 14, 15, 16, 17, 163,
164, 165, 153, 154), TA = c(9.10006221322572, 7.65505467142961,
8.21480062559674, 8.09251754304318, 8.466220758789, 8.48094407814006,
8.77304120569444, 8.31727518543397, 8.14410265791868, 8.80921738865237,
9.04091478341757, 9.66233618146246, 8.77015716015164, 9.46037931956657,
9.59702379240667, 10.1739258740118, 9.39524442215692, -0.00568604734662462,
-2.12940164413048, -0.428603434930109, 1.52337963973006, -1.04714984064565
), TS = c(9.6499861763085, 7.00622420539595, 7.73511170298675,
7.68006974050443, 8.07442411510912, 8.27687965909096, 8.76025039592727,
8.3345638889156, 9.23658956753677, 8.98160722605782, 8.98234210211611,
9.57066566368204, 8.74444401914267, 8.98719629775988, 9.18169205278566,
9.98225438314085, 9.56196773059615, 5.47788158053928, 2.58106090926808,
3.22420704848299, 1.36953555753786, 0.241334267522977), R = c(11.6679680423377,
11.0166459173372, 11.1851268491296, 10.7404563561694, 12.1054055597684,
10.9551321815546, 11.1975918244469, 10.7242192465965, 10.1661703705992,
11.4840412725324, 11.1248456370953, 11.2529612597628, 10.7694642397996,
12.3300887767583, 12.0478558531771, 12.3212362249214, 11.5650773932264,
9.56070414783612, 9.61762902218185, 10.2076240621201, 11.8234628013552,
10.9184029778985)), .Names = c("ID", "Y", "P", "A", "TA", "TS",
"R"), na.action = structure(77:78, .Names = c("77", "78"), class = "omit"), row.names = c(NA,
22L), class = "data.frame")
我有 运行 这个数据集的 RandomForest,带有留一主题交叉验证。见下文。
library (caret)
library(randomForest)
# Create training dataset
subs <- unique(df$ID)
train<- vector(mode = "list", length = length(subs))
test<- vector(mode = "list", length = length(subs))
# Run a RandomForest with leave one out ID CV
for(i in seq_along(subs))
train[[i]] <- which(df$ID != subs[i])
names(train) <- paste0("ID", subs)
rfFit <- train(Y~ P + TA + TS + R + A,
data =df,
method = "rf",
ntree = 100,
prox=TRUE, allowParallel=TRUE,
importance = TRUE,
trControl = trainControl(method = "cv",
index = train))
我现在想在测试数据集上预测 randomForest 对象的结果(见下文)
# Test dataset
for(i in seq_along(subs))
test[[i]] <- subset(df[df$ID == subs[i],])
但是,我无法实现它。有人可以帮我解决吗?
您可以像下面这样在循环中添加预测:
results <- list()
for(i in seq_along(subs)) {
test[[i]] <- subset(df[df$ID == subs[i],])
results[[i]] <- predict(rfFit, test[[i]])
}
print(results)
[[1]]
[1] 1913.784 2194.669 1984.460 1951.577 1907.284 2176.945 2025.345 2221.992
[[2]]
[1] 664.2550 746.0124 851.9516 960.3064 1037.9849
[[3]]
[1] 1132.243 1169.022 1292.756 1523.960
[[4]]
[1] 697.4928 603.5060 610.2461
[[5]]
[1] 667.2926 601.2800
我有一个数据框df
dput(df)
structure(list(ID = c(4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5,
6, 6, 6, 6, 8, 8, 8, 9, 9), Y = c(2268.14043972082, 2147.62290922552,
2269.1387550775, 2247.31983098201, 1903.39138268307, 2174.78291538358,
2359.51909126411, 2488.39004804939, 212.851575751527, 461.398994384333,
567.150629704352, 781.775113821961, 918.303706148872, 1107.37695799186,
1160.80594193377, 1412.61328924168, 1689.48879626486, 685.154353165934,
574.088067465695, 650.30821636616, 494.185166497016, 436.312162090908
), P = c(1750.51986303926, 1614.11541634798, 951.847023338079,
1119.3682884872, 1112.38984390156, 1270.65773075982, 1234.72262170166,
1338.46096616983, 1198.95775346458, 1136.69287367165, 1265.46480803983,
1364.70149818063, 1112.37006707489, 1346.49240261316, 1740.56677791104,
1410.99217295647, 1693.18871380948, 275.447173420805, 396.449789014179,
251.609239829704, 215.432550271042, 55.5336257666349), A = c(49,
50, 51, 52, 53, 54, 55, 56, 1, 2, 3, 4, 5, 14, 15, 16, 17, 163,
164, 165, 153, 154), TA = c(9.10006221322572, 7.65505467142961,
8.21480062559674, 8.09251754304318, 8.466220758789, 8.48094407814006,
8.77304120569444, 8.31727518543397, 8.14410265791868, 8.80921738865237,
9.04091478341757, 9.66233618146246, 8.77015716015164, 9.46037931956657,
9.59702379240667, 10.1739258740118, 9.39524442215692, -0.00568604734662462,
-2.12940164413048, -0.428603434930109, 1.52337963973006, -1.04714984064565
), TS = c(9.6499861763085, 7.00622420539595, 7.73511170298675,
7.68006974050443, 8.07442411510912, 8.27687965909096, 8.76025039592727,
8.3345638889156, 9.23658956753677, 8.98160722605782, 8.98234210211611,
9.57066566368204, 8.74444401914267, 8.98719629775988, 9.18169205278566,
9.98225438314085, 9.56196773059615, 5.47788158053928, 2.58106090926808,
3.22420704848299, 1.36953555753786, 0.241334267522977), R = c(11.6679680423377,
11.0166459173372, 11.1851268491296, 10.7404563561694, 12.1054055597684,
10.9551321815546, 11.1975918244469, 10.7242192465965, 10.1661703705992,
11.4840412725324, 11.1248456370953, 11.2529612597628, 10.7694642397996,
12.3300887767583, 12.0478558531771, 12.3212362249214, 11.5650773932264,
9.56070414783612, 9.61762902218185, 10.2076240621201, 11.8234628013552,
10.9184029778985)), .Names = c("ID", "Y", "P", "A", "TA", "TS",
"R"), na.action = structure(77:78, .Names = c("77", "78"), class = "omit"), row.names = c(NA,
22L), class = "data.frame")
我有 运行 这个数据集的 RandomForest,带有留一主题交叉验证。见下文。
library (caret)
library(randomForest)
# Create training dataset
subs <- unique(df$ID)
train<- vector(mode = "list", length = length(subs))
test<- vector(mode = "list", length = length(subs))
# Run a RandomForest with leave one out ID CV
for(i in seq_along(subs))
train[[i]] <- which(df$ID != subs[i])
names(train) <- paste0("ID", subs)
rfFit <- train(Y~ P + TA + TS + R + A,
data =df,
method = "rf",
ntree = 100,
prox=TRUE, allowParallel=TRUE,
importance = TRUE,
trControl = trainControl(method = "cv",
index = train))
我现在想在测试数据集上预测 randomForest 对象的结果(见下文)
# Test dataset
for(i in seq_along(subs))
test[[i]] <- subset(df[df$ID == subs[i],])
但是,我无法实现它。有人可以帮我解决吗?
您可以像下面这样在循环中添加预测:
results <- list()
for(i in seq_along(subs)) {
test[[i]] <- subset(df[df$ID == subs[i],])
results[[i]] <- predict(rfFit, test[[i]])
}
print(results)
[[1]]
[1] 1913.784 2194.669 1984.460 1951.577 1907.284 2176.945 2025.345 2221.992
[[2]]
[1] 664.2550 746.0124 851.9516 960.3064 1037.9849
[[3]]
[1] 1132.243 1169.022 1292.756 1523.960
[[4]]
[1] 697.4928 603.5060 610.2461
[[5]]
[1] 667.2926 601.2800