Python 中的内置最大堆 API
built-in max heap API in Python
默认 heapq 是最小队列实现,想知道是否有最大队列的选项?谢谢
我尝试了使用 _heapify_max 作为最大堆的解决方案,但是如何动态处理 push/pop 元素?似乎_heapify_max只能在初始化时使用。
import heapq
def heapsort(iterable):
h = []
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
if __name__ == "__main__":
print heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
编辑,已尝试 _heapify_max 似乎不适用于动态 push/pop 元素。我尝试了两种方法输出相同,两种输出都是 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].
def heapsort(iterable):
h = []
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
def heapsort2(iterable):
h = []
heapq._heapify_max(h)
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
if __name__ == "__main__":
print heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print heapsort2([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
提前致谢,
林
过去我只是简单地使用sortedcontainers的SortedList
,如:
> a = SortedList()
> a.add(3)
> a.add(2)
> a.add(1)
> a.pop()
3
它不是堆,但速度很快,可以根据需要直接工作。
如果你绝对需要它成为一个堆,你可以做一个一般的否定class来保存你的项目。
class Neg():
def __init__(self, x):
self.x = x
def __cmp__(self, other):
return -cmp(self.x, other.x)
def maxheappush(heap, item):
heapq.heappush(heap, Neg(item))
def maxheappop(heap):
return heapq.heappop(heap).x
但这会占用更多内存。
最新的 cpython 源代码中有一个 _heappop_max 函数,您可能会发现它很有用:
def _heappop_max(heap):
"""Maxheap version of a heappop."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
heapq._siftup_max(heap, 0)
return returnitem
return lastelt
如果您使用 heapq._siftdown_max
更改 heappush
逻辑,您应该得到所需的输出:
def _heappush_max(heap, item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappop_max(heap):
"""Maxheap version of a heappop."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
heapq._siftup_max(heap, 0)
return returnitem
return lastelt
def heapsort2(iterable):
h = []
heapq._heapify_max(h)
for value in iterable:
_heappush_max(h, value)
return [_heappop_max(h) for i in range(len(h))]
输出:
In [14]: heapsort2([1,3,6,2,7,9,0,4,5,8])
Out[14]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
In [15]: heapsort2([7, 8, 9, 6, 4, 2, 3, 5, 1, 0])
Out[15]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
In [16]: heapsort2([19,13,15,17,11,10,14,20,18])
Out[16]: [20, 19, 18, 17, 15, 14, 13, 11, 10]
In [17]: heapsort2(["foo","bar","foobar","baz"])
Out[17]: ['foobar', 'foo', 'baz', 'bar']
默认 heapq 是最小队列实现,想知道是否有最大队列的选项?谢谢
我尝试了使用 _heapify_max 作为最大堆的解决方案,但是如何动态处理 push/pop 元素?似乎_heapify_max只能在初始化时使用。
import heapq
def heapsort(iterable):
h = []
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
if __name__ == "__main__":
print heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
编辑,已尝试 _heapify_max 似乎不适用于动态 push/pop 元素。我尝试了两种方法输出相同,两种输出都是 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].
def heapsort(iterable):
h = []
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
def heapsort2(iterable):
h = []
heapq._heapify_max(h)
for value in iterable:
heapq.heappush(h, value)
return [heapq.heappop(h) for i in range(len(h))]
if __name__ == "__main__":
print heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print heapsort2([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
提前致谢, 林
过去我只是简单地使用sortedcontainers的SortedList
,如:
> a = SortedList()
> a.add(3)
> a.add(2)
> a.add(1)
> a.pop()
3
它不是堆,但速度很快,可以根据需要直接工作。
如果你绝对需要它成为一个堆,你可以做一个一般的否定class来保存你的项目。
class Neg():
def __init__(self, x):
self.x = x
def __cmp__(self, other):
return -cmp(self.x, other.x)
def maxheappush(heap, item):
heapq.heappush(heap, Neg(item))
def maxheappop(heap):
return heapq.heappop(heap).x
但这会占用更多内存。
最新的 cpython 源代码中有一个 _heappop_max 函数,您可能会发现它很有用:
def _heappop_max(heap):
"""Maxheap version of a heappop."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
heapq._siftup_max(heap, 0)
return returnitem
return lastelt
如果您使用 heapq._siftdown_max
更改 heappush
逻辑,您应该得到所需的输出:
def _heappush_max(heap, item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappop_max(heap):
"""Maxheap version of a heappop."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
heapq._siftup_max(heap, 0)
return returnitem
return lastelt
def heapsort2(iterable):
h = []
heapq._heapify_max(h)
for value in iterable:
_heappush_max(h, value)
return [_heappop_max(h) for i in range(len(h))]
输出:
In [14]: heapsort2([1,3,6,2,7,9,0,4,5,8])
Out[14]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
In [15]: heapsort2([7, 8, 9, 6, 4, 2, 3, 5, 1, 0])
Out[15]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
In [16]: heapsort2([19,13,15,17,11,10,14,20,18])
Out[16]: [20, 19, 18, 17, 15, 14, 13, 11, 10]
In [17]: heapsort2(["foo","bar","foobar","baz"])
Out[17]: ['foobar', 'foo', 'baz', 'bar']