如何 return while 循环中的值
How do I return a value within a while loop
我正在为我的一门 CS 课程做作业。我已经弄清楚了这件事,但我不知道如何 return 我的 while 循环中的值。
我遇到的问题是每次通过 while 循环我都需要加上商,直到 t == 0。在我得到除法的加法之前,我的一切都正常工作,所有它都加在一起一样的两个号。我需要它做的是记住 "division" 等于循环中的前一项,然后将其添加到当前循环计算的内容中。
我希望这看起来有点道理。
Here is a link to the question for those of you who now have a headache after reading my question
# FORMULA IS AS FOLLOWS
# 1 + x + (x^t)/(t!) until t == 1
t = int(input("Enter a non negative integer for t: "))
x = float(input("Enter a real number for x: "))
fact = 1
finalProduct = 1
counter = 1
while counter <= t :
counter = counter + 1
fact = fact * counter
print("counter:",counter)
print("fact:",fact)
xPwr = (x**counter)
division = (xPwr / fact)
print("Division: ",division)
addition = (division + division)#HERE IS MY PROBLEM
print("Sum:", addition)
finalProduct = (1 + x + addition)
print("finalProduct",finalProduct)
您应该使用 Recursive Functions 将变量传递到下一个循环。
def factorial(n):
if n == 1:
return 1
else:
return n * factorial(n-1)
它正在将 "n-1" 值传递给下一个循环。
您想将 core 的 return 值赋值回本地 y 变量,它不是通过引用传递的:
y = 核心(x)
在进入循环之前,您还需要设置 y 。函数中的局部变量在其他函数中不可用。
因此,您根本不需要将 y 传递给 core(x):
def core(x):
y = input("choose a number: ")
if y == x:
print("You gussed the right number!")
return y
elif y > x:
print("The number is lower, try again")
return y
else:
print("The number is higher, try again")
return y
and the loop becomes:
y = None
while (x != y) and (i < t):
y = core(x)
i += 1
在 main() 函数中将 y 设置为什么并不重要,只要在用户猜测之前它永远不会等于 x 即可。
这与您的导师给出的问题描述非常接近:
x = float(input("Enter a real number for x: "))
t = int(input("Enter a non negative integer for t: "))
counter = 1
series = 1
num = 1
denom = 1
while counter <= t :
num = num * x
denom = denom * counter
series = series + num / denom
counter = counter + 1
print(series)
这是一个例子:
Enter a real number for x: 2.0
Enter a non negative integer for t: 3
6.333333333333333
这里是一个稍微扩展的版本。
首先,您应该意识到给定的系列是 e ** x
的近似值;包含的术语越多,最终结果就越准确。让我们探讨一下:
import math
def approx_ex(x, max_t):
"""
Maclaurin series expansion for e**x
"""
num = 1 # == x**0
denom = 1 # == 0!
total = 1.0 # term_0 == (x**0) / 0!
for t in range(1, max_t + 1):
# modify numerator and denominator to find next term
num *= x # x**(t-1) * x == x**t
denom *= t # (t-1)! * t == t!
# keep a running total
total += num / denom
return total
def main():
x = float(input("Input a real number: "))
actual = math.e ** x
print("\nApproximation of e ** {} == {}\n".format(x, actual))
for terms in range(1, 16):
approx = approx_ex(x, terms)
error = approx - actual
print("{:>2d}: {:16.12f} ({:16.12f})".format(terms, approx, error))
if __name__ == "__main__":
main()
这样运行
Input a real number: 3.205
Approximation of e ** 3.205 == 24.655500016456244
1: 4.205000000000 (-20.450500016456)
2: 9.341012500000 (-15.314487516456)
3: 14.827985854167 ( -9.827514162290)
4: 19.224423254193 ( -5.431076762264)
5: 22.042539627609 ( -2.612960388847)
6: 23.547883457076 ( -1.107616559380)
7: 24.237115881853 ( -0.418384134603)
8: 24.513239622030 ( -0.142260394426)
9: 24.611570353948 ( -0.043929662508)
10: 24.643085353528 ( -0.012414662928)
11: 24.652267678406 ( -0.003232338051)
12: 24.654720124342 ( -0.000779892115)
13: 24.655324746590 ( -0.000175269866)
14: 24.655463161897 ( -0.000036854559)
15: 24.655492736635 ( -0.000007279822)
这非常清楚地显示了随着更多的项被加在一起,结果如何变得越来越好。
我正在为我的一门 CS 课程做作业。我已经弄清楚了这件事,但我不知道如何 return 我的 while 循环中的值。
我遇到的问题是每次通过 while 循环我都需要加上商,直到 t == 0。在我得到除法的加法之前,我的一切都正常工作,所有它都加在一起一样的两个号。我需要它做的是记住 "division" 等于循环中的前一项,然后将其添加到当前循环计算的内容中。
我希望这看起来有点道理。 Here is a link to the question for those of you who now have a headache after reading my question
# FORMULA IS AS FOLLOWS
# 1 + x + (x^t)/(t!) until t == 1
t = int(input("Enter a non negative integer for t: "))
x = float(input("Enter a real number for x: "))
fact = 1
finalProduct = 1
counter = 1
while counter <= t :
counter = counter + 1
fact = fact * counter
print("counter:",counter)
print("fact:",fact)
xPwr = (x**counter)
division = (xPwr / fact)
print("Division: ",division)
addition = (division + division)#HERE IS MY PROBLEM
print("Sum:", addition)
finalProduct = (1 + x + addition)
print("finalProduct",finalProduct)
您应该使用 Recursive Functions 将变量传递到下一个循环。
def factorial(n):
if n == 1:
return 1
else:
return n * factorial(n-1)
它正在将 "n-1" 值传递给下一个循环。
您想将 core 的 return 值赋值回本地 y 变量,它不是通过引用传递的:
y = 核心(x) 在进入循环之前,您还需要设置 y 。函数中的局部变量在其他函数中不可用。
因此,您根本不需要将 y 传递给 core(x):
def core(x):
y = input("choose a number: ")
if y == x:
print("You gussed the right number!")
return y
elif y > x:
print("The number is lower, try again")
return y
else:
print("The number is higher, try again")
return y
and the loop becomes:
y = None
while (x != y) and (i < t):
y = core(x)
i += 1
在 main() 函数中将 y 设置为什么并不重要,只要在用户猜测之前它永远不会等于 x 即可。
这与您的导师给出的问题描述非常接近:
x = float(input("Enter a real number for x: "))
t = int(input("Enter a non negative integer for t: "))
counter = 1
series = 1
num = 1
denom = 1
while counter <= t :
num = num * x
denom = denom * counter
series = series + num / denom
counter = counter + 1
print(series)
这是一个例子:
Enter a real number for x: 2.0
Enter a non negative integer for t: 3
6.333333333333333
这里是一个稍微扩展的版本。
首先,您应该意识到给定的系列是 e ** x
的近似值;包含的术语越多,最终结果就越准确。让我们探讨一下:
import math
def approx_ex(x, max_t):
"""
Maclaurin series expansion for e**x
"""
num = 1 # == x**0
denom = 1 # == 0!
total = 1.0 # term_0 == (x**0) / 0!
for t in range(1, max_t + 1):
# modify numerator and denominator to find next term
num *= x # x**(t-1) * x == x**t
denom *= t # (t-1)! * t == t!
# keep a running total
total += num / denom
return total
def main():
x = float(input("Input a real number: "))
actual = math.e ** x
print("\nApproximation of e ** {} == {}\n".format(x, actual))
for terms in range(1, 16):
approx = approx_ex(x, terms)
error = approx - actual
print("{:>2d}: {:16.12f} ({:16.12f})".format(terms, approx, error))
if __name__ == "__main__":
main()
这样运行
Input a real number: 3.205
Approximation of e ** 3.205 == 24.655500016456244
1: 4.205000000000 (-20.450500016456)
2: 9.341012500000 (-15.314487516456)
3: 14.827985854167 ( -9.827514162290)
4: 19.224423254193 ( -5.431076762264)
5: 22.042539627609 ( -2.612960388847)
6: 23.547883457076 ( -1.107616559380)
7: 24.237115881853 ( -0.418384134603)
8: 24.513239622030 ( -0.142260394426)
9: 24.611570353948 ( -0.043929662508)
10: 24.643085353528 ( -0.012414662928)
11: 24.652267678406 ( -0.003232338051)
12: 24.654720124342 ( -0.000779892115)
13: 24.655324746590 ( -0.000175269866)
14: 24.655463161897 ( -0.000036854559)
15: 24.655492736635 ( -0.000007279822)
这非常清楚地显示了随着更多的项被加在一起,结果如何变得越来越好。