从顶点到所有其他可达节点的所有简单路径
All simple paths from a vertex to all other reachable nodes
我对 Prolog 完全陌生,正在研究图表。我在网上发现一个问题,要求我指定一个节点,然后列出从该节点可达的所有简单路径。没有目标节点,只需尝试所有可能性和 return 所有这些路径。
我将图形表示为路径 (X, Y),表示从 X 到 Y 的有向边。
我建立了这个循环的简单知识库:
path(a, b).
path(b, c).
path(c, d).
path(d, a).
path(d, e).
path(d, f).
path(f, g).
如果我查询 all_paths(a, P),那么 P 应该是(假设 ; 是垃圾邮件,直到所有选项都用完)。
P = [a].
P = [a, b].
P = [a, b, c].
P = [a, b, c, d].
P = [a, b, c, d, e].
P = [a, b, c, d, f].
P = [a, b, c, d, f, g].
作为开场白我写了类似的东西:
all_paths(Source, P) :- all_paths(Source, P, []).
all_paths(_, [], _).
all_paths(Source, [Source | P], Visited) :-
path(Source, Node),
\+ memberchk(Node, Visited),
all_paths(Node, P, [Node | Visited]).
好的,稍微修改一下,现在我回来了:
X = [] ? ;
X = [a] ? ;
X = [a,b] ? ;
X = [a,b,c] ? ;
X = [a,b,c,d] ? ; <- Here it does not pick up e
X = [a,b,c,d] ? ;
X = [a,b,c,d] ? ;
X = [a,b,c,d,f] ? ;
有人可以帮忙弄清楚如何正确获取所有路径吗?
无需重新发明轮子!
首先,我们将您的谓词 path/2
重命名为 edge/2
:
edge(a, b).
edge(b, c).
edge(c, d).
edge(d, a).
edge(d, e).
edge(d, f).
edge(f, g).
然后,我们将meta-predicate path/4
与edge/2
结合使用:
?- path(edge,Path,From,To).
Path = [To], From = To
; Path = [a,b], From = a, To = b
; Path = [a,b,c], From = a, To = c
; Path = [a,b,c,d], From = a, To = d
; Path = [a,b,c,d,e], From = a, To = e
; Path = [a,b,c,d,f], From = a, To = f
; Path = [a,b,c,d,f,g], From = a, To = g
; Path = [b,c], From = b, To = c
; Path = [b,c,d], From = b, To = d
; Path = [b,c,d,a], From = b, To = a
; Path = [b,c,d,e], From = b, To = e
; Path = [b,c,d,f], From = b, To = f
; Path = [b,c,d,f,g], From = b, To = g
; Path = [c,d], From = c, To = d
; Path = [c,d,a], From = c, To = a
; Path = [c,d,a,b], From = c, To = b
; Path = [c,d,e], From = c, To = e
; Path = [c,d,f], From = c, To = f
; Path = [c,d,f,g], From = c, To = g
; Path = [d,a], From = d, To = a
; Path = [d,a,b], From = d, To = b
; Path = [d,a,b,c], From = d, To = c
; Path = [d,e], From = d, To = e
; Path = [d,f], From = d, To = f
; Path = [d,f,g], From = d, To = g
; Path = [f,g], From = f, To = g
; false.
编辑
如果我们只对从 a
开始的路径感兴趣,我们只需写:
?- path(edge,Path,a,To).
Path = [a], To = a
; Path = [a, b], To = b
; Path = [a, b, c], To = c
; Path = [a, b, c, d], To = d
; Path = [a, b, c, d, e], To = e
; Path = [a, b, c, d, f], To = f
; Path = [a, b, c, d, f, g], To = g
; false.
'swapping' 节点和来源
all_paths(_, [], _).
all_paths(Source, [Node | P], Visited) :-
path(Source, Node),
\+ memberchk(Node, Visited),
all_paths(Node, P, [Source | Visited]).
产量
?- all_paths(a, P).
P = [] ;
P = [b] ;
P = [b, c] ;
P = [b, c, d] ;
P = [b, c, d, e] ;
P = [b, c, d, f] ;
P = [b, c, d, f, g] ;
false.
它缺少起始节点,我只需在 'driver' 谓词中添加:
all_paths(Source, [Source|P]) :- all_paths(Source, P, []).
产量
?- all_paths(a, P).
P = [a] ;
P = [a, b] ;
P = [a, b, c] ;
P = [a, b, c, d] ;
P = [a, b, c, d, e] ;
P = [a, b, c, d, f] ;
P = [a, b, c, d, f, g] ;
false.
风格说明:如果我们遵循一些关于 IO 参数的规则,代码将更具可读性。输出参数应该在输入参数之后。好吧,这并不总是适用...
我对 Prolog 完全陌生,正在研究图表。我在网上发现一个问题,要求我指定一个节点,然后列出从该节点可达的所有简单路径。没有目标节点,只需尝试所有可能性和 return 所有这些路径。
我将图形表示为路径 (X, Y),表示从 X 到 Y 的有向边。
我建立了这个循环的简单知识库:
path(a, b).
path(b, c).
path(c, d).
path(d, a).
path(d, e).
path(d, f).
path(f, g).
如果我查询 all_paths(a, P),那么 P 应该是(假设 ; 是垃圾邮件,直到所有选项都用完)。
P = [a].
P = [a, b].
P = [a, b, c].
P = [a, b, c, d].
P = [a, b, c, d, e].
P = [a, b, c, d, f].
P = [a, b, c, d, f, g].
作为开场白我写了类似的东西:
all_paths(Source, P) :- all_paths(Source, P, []).
all_paths(_, [], _).
all_paths(Source, [Source | P], Visited) :-
path(Source, Node),
\+ memberchk(Node, Visited),
all_paths(Node, P, [Node | Visited]).
好的,稍微修改一下,现在我回来了:
X = [] ? ;
X = [a] ? ;
X = [a,b] ? ;
X = [a,b,c] ? ;
X = [a,b,c,d] ? ; <- Here it does not pick up e
X = [a,b,c,d] ? ;
X = [a,b,c,d] ? ;
X = [a,b,c,d,f] ? ;
有人可以帮忙弄清楚如何正确获取所有路径吗?
无需重新发明轮子!
首先,我们将您的谓词 path/2
重命名为 edge/2
:
edge(a, b).
edge(b, c).
edge(c, d).
edge(d, a).
edge(d, e).
edge(d, f).
edge(f, g).
然后,我们将meta-predicate path/4
与edge/2
结合使用:
?- path(edge,Path,From,To).
Path = [To], From = To
; Path = [a,b], From = a, To = b
; Path = [a,b,c], From = a, To = c
; Path = [a,b,c,d], From = a, To = d
; Path = [a,b,c,d,e], From = a, To = e
; Path = [a,b,c,d,f], From = a, To = f
; Path = [a,b,c,d,f,g], From = a, To = g
; Path = [b,c], From = b, To = c
; Path = [b,c,d], From = b, To = d
; Path = [b,c,d,a], From = b, To = a
; Path = [b,c,d,e], From = b, To = e
; Path = [b,c,d,f], From = b, To = f
; Path = [b,c,d,f,g], From = b, To = g
; Path = [c,d], From = c, To = d
; Path = [c,d,a], From = c, To = a
; Path = [c,d,a,b], From = c, To = b
; Path = [c,d,e], From = c, To = e
; Path = [c,d,f], From = c, To = f
; Path = [c,d,f,g], From = c, To = g
; Path = [d,a], From = d, To = a
; Path = [d,a,b], From = d, To = b
; Path = [d,a,b,c], From = d, To = c
; Path = [d,e], From = d, To = e
; Path = [d,f], From = d, To = f
; Path = [d,f,g], From = d, To = g
; Path = [f,g], From = f, To = g
; false.
编辑
如果我们只对从 a
开始的路径感兴趣,我们只需写:
?- path(edge,Path,a,To).
Path = [a], To = a
; Path = [a, b], To = b
; Path = [a, b, c], To = c
; Path = [a, b, c, d], To = d
; Path = [a, b, c, d, e], To = e
; Path = [a, b, c, d, f], To = f
; Path = [a, b, c, d, f, g], To = g
; false.
'swapping' 节点和来源
all_paths(_, [], _).
all_paths(Source, [Node | P], Visited) :-
path(Source, Node),
\+ memberchk(Node, Visited),
all_paths(Node, P, [Source | Visited]).
产量
?- all_paths(a, P).
P = [] ;
P = [b] ;
P = [b, c] ;
P = [b, c, d] ;
P = [b, c, d, e] ;
P = [b, c, d, f] ;
P = [b, c, d, f, g] ;
false.
它缺少起始节点,我只需在 'driver' 谓词中添加:
all_paths(Source, [Source|P]) :- all_paths(Source, P, []).
产量
?- all_paths(a, P).
P = [a] ;
P = [a, b] ;
P = [a, b, c] ;
P = [a, b, c, d] ;
P = [a, b, c, d, e] ;
P = [a, b, c, d, f] ;
P = [a, b, c, d, f, g] ;
false.
风格说明:如果我们遵循一些关于 IO 参数的规则,代码将更具可读性。输出参数应该在输入参数之后。好吧,这并不总是适用...