使用欧几里德算法求 GCF(GCD)
Using Euclid Algorithm to find GCF(GCD)
我正在尝试编写一个函数来查找 2 个数字的 gcd,使用我发现的欧几里德算法 here。
From the larger number, subtract the smaller number as many times as you can until you have a number that is smaller than the small number. (or without getting a negative answer) Now, using the original small number and the result, a smaller number, repeat the process. Repeat this until the last result is zero, and the GCF is the next-to-last small number result. Also see our Euclid's Algorithm Calculator.
Example: Find the GCF (18, 27)
27 - 18 = 9
18 - 9 = 9
9 - 9 = 0
So, the greatest common factor of 18 and 27 is 9, the smallest result we had before we reached 0.
按照这些说明,我编写了一个函数:
int hcf(int a, int b)
{
int small = (a < b)? a : b;
int big = (a > b)? a : b;
int res;
int gcf;
cout << "small = " << small << "\n";
cout << "big = " << big << "\n";
while ((res = big - small) > small && res > 0) {
cout << "res = " << res << "\n";
}
while ((gcf = small - res) > 0) {
cout << "gcf = " << gcf << "\n";
}
return gcf;
}
然而,第二个循环似乎是无限的。谁能解释一下为什么?
我知道该网站实际上显示了代码(PHP),但我正在尝试仅使用他们提供的说明来编写此代码。
当然这个循环是无限的:
while ((gcf = small - res) > 0) {
cout << "gcf = " << gcf << "\n";
}
small
和 res
在循环中不会改变,所以 gcf
也不会。该循环等效于:
gcf = small - res;
while (gcf > 0) {
cout << "gcf = " << gcf << "\n";
}
这可能更清楚。
我会将该算法移植到代码如下:
int gcd(int a, int b) {
while (a != b) {
if (a > b) {
a -= b;
}
else {
b -= a;
}
}
return a;
}
虽然通常 gcd
是使用 mod 实现的,因为它要快得多:
int gcd(int a, int b) {
return (b == 0) ? a : gcd(b, a % b);
}
我正在尝试编写一个函数来查找 2 个数字的 gcd,使用我发现的欧几里德算法 here。
From the larger number, subtract the smaller number as many times as you can until you have a number that is smaller than the small number. (or without getting a negative answer) Now, using the original small number and the result, a smaller number, repeat the process. Repeat this until the last result is zero, and the GCF is the next-to-last small number result. Also see our Euclid's Algorithm Calculator.
Example: Find the GCF (18, 27)
27 - 18 = 9
18 - 9 = 9
9 - 9 = 0
So, the greatest common factor of 18 and 27 is 9, the smallest result we had before we reached 0.
按照这些说明,我编写了一个函数:
int hcf(int a, int b)
{
int small = (a < b)? a : b;
int big = (a > b)? a : b;
int res;
int gcf;
cout << "small = " << small << "\n";
cout << "big = " << big << "\n";
while ((res = big - small) > small && res > 0) {
cout << "res = " << res << "\n";
}
while ((gcf = small - res) > 0) {
cout << "gcf = " << gcf << "\n";
}
return gcf;
}
然而,第二个循环似乎是无限的。谁能解释一下为什么?
我知道该网站实际上显示了代码(PHP),但我正在尝试仅使用他们提供的说明来编写此代码。
当然这个循环是无限的:
while ((gcf = small - res) > 0) {
cout << "gcf = " << gcf << "\n";
}
small
和 res
在循环中不会改变,所以 gcf
也不会。该循环等效于:
gcf = small - res;
while (gcf > 0) {
cout << "gcf = " << gcf << "\n";
}
这可能更清楚。
我会将该算法移植到代码如下:
int gcd(int a, int b) {
while (a != b) {
if (a > b) {
a -= b;
}
else {
b -= a;
}
}
return a;
}
虽然通常 gcd
是使用 mod 实现的,因为它要快得多:
int gcd(int a, int b) {
return (b == 0) ? a : gcd(b, a % b);
}