使用 tidyr 重塑数据

Reshaping data using tidyr

我正在使用一个数据框 data,它的结构与下面的相似。

  Gender   Age         Number
1 Female 55-59 years       5
2 Female   65+ years       10
3   Male 25-29 years       4
4   Male 40-44 years       3
5   Male 50-54 years       1

我正在尝试使用 tidyr 重塑数据(迄今为止未成功),以便 Number 列的每个值都在其自己的行中显示。我正在寻找的输出应类似于以下内容:

  Gender   Age
1 Female 55-59 years  
2 Female 55-59 years
3 Female 55-59 years
4 Female 55-59 years
5 Female 55-59 years 
6 Female   65+ years
7 Female   65+ years
8 Female   65+ years
9 Female   65+ years
10 Female   65+ years
11 Female   65+ years
12 Female   65+ years
13 Female   65+ years
14 Female   65+ years
15 Female   65+ years
16 Male 25-29 years
17 Male 25-29 years
18 Male 25-29 years
19 Male 25-29 years
20 Male 40-44 years
21 Male 40-44 years
22 Male 40-44 years
23 Male 50-54 years

我曾尝试使用 gather/spread 函数的各种组合,但离成功还差得很远。我相当确定这在 tidyr 中是可能的!

我知道我可以使用其他一些 packages/functions 来获得相同的结果,但我非常希望得到一个 tidyr 解决方案,这样我就可以将它包含在更大的 dplyr/tidyr 管道.

非常感谢任何帮助。

dat <- structure(list(Gender = structure(c(3L, 3L, 1L, 2L, 1L), .Label = c("   Male", 
    " Male", "Female"), class = "factor"), Age = structure(c(5L, 
    1L, 2L, 3L, 4L), .Label = c("65+ years", "25-29 years", "40-44 years", 
    "50-54 years", "55-59 years"), class = "factor"), Number = c(5L, 
    10L, 4L, 3L, 1L)), .Names = c("Gender", "Age", "Number"), class = "data.frame", row.names = c(NA, 
    -5L))

不是 tidyr 但相当快速和高效:

dat2 <- dat[rep(1:nrow(dat), dat[["Number"]]), 1:2]
rownames(dat2) <- NULL

##     Gender          Age
## 1   Female  55-59 years
## 2   Female  55-59 years
## 3   Female  55-59 years
## 4   Female  55-59 years
## 5   Female  55-59 years
## 6   Female    65+ years
## 7   Female    65+ years
## 8   Female    65+ years
## 9   Female    65+ years
## 10  Female    65+ years
## 11  Female    65+ years
## 12  Female    65+ years
## 13  Female    65+ years
## 14  Female    65+ years
## 15  Female    65+ years
## 16    Male  25-29 years
## 17    Male  25-29 years
## 18    Male  25-29 years
## 19    Male  25-29 years
## 20    Male  40-44 years
## 21    Male  40-44 years
## 22    Male  40-44 years
## 23    Male  50-54 years

这也不是用tidyr,不过我觉得很自然:

dat %>% slice(rep(row_number(), Number)) %>% select(-Number)

    Gender         Age
1   Female 55-59 years
2   Female 55-59 years
3   Female 55-59 years
4   Female 55-59 years
5   Female 55-59 years
6   Female   65+ years
7   Female   65+ years
8   Female   65+ years
9   Female   65+ years
10  Female   65+ years
11  Female   65+ years
12  Female   65+ years
13  Female   65+ years
14  Female   65+ years
15  Female   65+ years
16    Male 25-29 years
17    Male 25-29 years
18    Male 25-29 years
19    Male 25-29 years
20    Male 40-44 years
21    Male 40-44 years
22    Male 40-44 years
23    Male 50-54 years

正如@bramtayl 所建议的那样,

可以(可以说)提高可读性
dat %>% slice(row_number() %>% rep(Number)) %>% select(-Number)

我们可以使用 tidyr/dplyr 来做到这一点。将值更改为序列 unnest 后,将 'Number' 转换为 list 列,并使用 select.[=18= 从输出中删除 'Number' 列]

library(dplyr)
library(tidyr)
dat1 <- dat %>% 
          mutate(Number= lapply(Number, seq)) %>%
          unnest(Number) %>% 
          select(-Number)

请注意,输出将是一个 tbl_df,这在我们使用 dplyr 函数执行其他操作时会很有用。

str(dat1)
# Classes ‘tbl_df’, ‘tbl’ and 'data.frame':       23 obs. of  2 variables:
#  $ Gender: Factor w/ 3 levels "   Male"," Male",..: 3 3 3 3 3 3 3 3 3 3 ...
#  $ Age   : Factor w/ 5 levels "65+ years","25-29 years",..: 5 5 5 5 5 1 1 1 1 1 ...

dat1 %>%
     as.data.frame()
#   Gender         Age
#1   Female 55-59 years
#2   Female 55-59 years
#3   Female 55-59 years
#4   Female 55-59 years
#5   Female 55-59 years
#6   Female   65+ years
#7   Female   65+ years
#8   Female   65+ years
#9   Female   65+ years
#10  Female   65+ years
#11  Female   65+ years
#12  Female   65+ years
#13  Female   65+ years
#14  Female   65+ years
#15  Female   65+ years
#16    Male 25-29 years
#17    Male 25-29 years
#18    Male 25-29 years
#19    Male 25-29 years
#20    Male 40-44 years
#21    Male 40-44 years
#22    Male 40-44 years
#23    Male 50-54 years