flink:Flink Shell 抛出 NullPointerException
flink: Flink Shell throws NullPointerException
- 我正在使用 Flink Interactive Shell 来执行 WordCount。它适用于 10MB 的文件大小。但是对于 100MB 的文件,shell 抛出 NullPointerException:
:
java.lang.NullPointerException
at org.apache.flink.api.common.accumulators.SerializedListAccumulator.deserializeList(SerializedListAccumulator.java:93)
at org.apache.flink.api.scala.DataSet.collect(DataSet.scala:549)
at .<init>(<console>:22)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:734)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:983)
at scala.tools.nsc.interpreter.IMain.loadAndRunReq(IMain.scala:573)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:604)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:568)
at scala.tools.nsc.interpreter.ILoop.reallyInterpret(ILoop.scala:760)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:805)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:717)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:601)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.reflect.io.Streamable$Chars$class.applyReader(Streamable.scala:104)
at scala.reflect.io.File.applyReader(File.scala:82)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply$mcV$sp(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:130)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop.savingReader(ILoop.scala:135)
at scala.tools.nsc.interpreter.ILoop.interpretAllFrom(ILoop.scala:596)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:660)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop.withFile(ILoop.scala:653)
at scala.tools.nsc.interpreter.ILoop.loadCommand(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.LoopCommands$LineCmd.apply(LoopCommands.scala:81)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:712)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:882)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:837)
at org.apache.flink.api.scala.FlinkShell$.startShell(FlinkShell.scala:84)
at org.apache.flink.api.scala.FlinkShell$.main(FlinkShell.scala:54)
at org.apache.flink.api.scala.FlinkShell.main(FlinkShell.scala)
我在 linux 系统(16MB RAM)上工作。那里可能有什么问题?
我的代码(改编自https://ci.apache.org/projects/flink/flink-docs-release-0.9/quickstart/scala_api_quickstart.html):
var filename = new String(<myFileName>)
var text = env.readTextFile(filename)
var counts = text.flatMap { _.toLowerCase.split("\W+") }.map { (_, 1) }.groupBy(0).sum(1)
var result = counts.collect()
- 我也注意到,flink只在一个核上执行程序。使用 env.getConfig.setParallelism(4) 和 运行 设置并行度后,程序再次发生另一个异常:
第 1 部分:
org.apache.flink.client.program.ProgramInvocationException: The program execution failed: Job execution failed.
at org.apache.flink.client.program.Client.run(Client.java:413)
at org.apache.flink.client.program.Client.run(Client.java:356)
at org.apache.flink.client.program.Client.run(Client.java:349)
at org.apache.flink.client.RemoteExecutor.executePlanWithJars(RemoteExecutor.java:89)
at org.apache.flink.client.RemoteExecutor.executePlan(RemoteExecutor.java:82)
at org.apache.flink.api.java.ScalaShellRemoteEnvironment.execute(ScalaShellRemoteEnvironment.java:68)
at org.apache.flink.api.java.ExecutionEnvironment.execute(ExecutionEnvironment.java:789)
at org.apache.flink.api.scala.ExecutionEnvironment.execute(ExecutionEnvironment.scala:576)
at org.apache.flink.api.scala.DataSet.collect(DataSet.scala:544)
at .<init>(<console>:28)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:734)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:983)
at scala.tools.nsc.interpreter.IMain.loadAndRunReq(IMain.scala:573)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:604)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:568)
at scala.tools.nsc.interpreter.ILoop.reallyInterpret(ILoop.scala:760)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:805)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:717)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:601)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.reflect.io.Streamable$Chars$class.applyReader(Streamable.scala:104)
at scala.reflect.io.File.applyReader(File.scala:82)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply$mcV$sp(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:130)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop.savingReader(ILoop.scala:135)
at scala.tools.nsc.interpreter.ILoop.interpretAllFrom(ILoop.scala:596)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:660)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop.withFile(ILoop.scala:653)
at scala.tools.nsc.interpreter.ILoop.loadCommand(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.LoopCommands$LineCmd.apply(LoopCommands.scala:81)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:712)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:882)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:837)
at org.apache.flink.api.scala.FlinkShell$.startShell(FlinkShell.scala:84)
at org.apache.flink.api.scala.FlinkShell$.main(FlinkShell.scala:54)
at org.apache.flink.api.scala.FlinkShell.main(FlinkShell.scala)
第 2 部分:
Caused by: org.apache.flink.runtime.client.JobExecutionException: Job execution failed.
at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages.applyOrElse(JobManager.scala:314)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at org.apache.flink.runtime.ActorLogMessages$$anon.apply(ActorLogMessages.scala:43)
at org.apache.flink.runtime.ActorLogMessages$$anon.apply(ActorLogMessages.scala:29)
at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
at org.apache.flink.runtime.ActorLogMessages$$anon.applyOrElse(ActorLogMessages.scala:29)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:92)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254)
at akka.dispatch.Mailbox.run(Mailbox.scala:221)
at akka.dispatch.Mailbox.exec(Mailbox.scala:231)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Caused by: org.apache.flink.runtime.jobmanager.scheduler.NoResourceAvailableException: Not enough free slots available to run the job. You can decrease the operator parallelism or increase the number of slots per TaskManager in the configuration. Task to schedule: < Attempt #0 (CHAIN DataSource (at .<init>(<console>:26) (org.apache.flink.api.java.io.TextInputFormat)) -> FlatMap (FlatMap at .<init>(<console>:27)) -> Map (Map at .<init>(<console>:27)) -> Combine(SUM(1)) (2/4)) @ (unassigned) - [SCHEDULED] > with groupID < fc507fbb50fea681c726ca1d824c7577 > in sharing group < SlotSharingGroup [fc507fbb50fea681c726ca1d824c7577, fb90f780c9d5a4a9dbf983cb06bec946, 52b8abe5a21ed808f0473a599d89f046] >. Resources available to scheduler: Number of instances=1, total number of slots=1, available slots=0
at org.apache.flink.runtime.jobmanager.scheduler.Scheduler.scheduleTask(Scheduler.java:250)
at org.apache.flink.runtime.jobmanager.scheduler.Scheduler.scheduleImmediately(Scheduler.java:126)
at org.apache.flink.runtime.executiongraph.Execution.scheduleForExecution(Execution.java:271)
at org.apache.flink.runtime.executiongraph.ExecutionVertex.scheduleForExecution(ExecutionVertex.java:430)
at org.apache.flink.runtime.executiongraph.ExecutionJobVertex.scheduleAll(ExecutionJobVertex.java:307)
at org.apache.flink.runtime.executiongraph.ExecutionGraph.scheduleForExecution(ExecutionGraph.java:508)
at org.apache.flink.runtime.jobmanager.JobManager.org$apache$flink$runtime$jobmanager$JobManager$$submitJob(JobManager.scala:606)
at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages.applyOrElse(JobManager.scala:190)
... 18 more
这是否意味着taskmanager.numberOfTaskSlots?在我的flink-conf.yaml中这个key是设置成4的。但是在shell中怎么设置呢?
你问了两个问题:
- 为什么
print()
对大 DataSet
不起作用?
当您在 DataSet
上使用 count()
、collect()
或 print()
时,所有在任务管理器上分区的数据都必须通过工作经理给客户。最好只将这些方法用于测试或实现小 DataSet
s。对于大数据,请使用 Apache Flink 中提供的接收器之一,例如writeAsTextFile(..)
。对于每个并行任务,将创建一个输出文件。
如果您仍然想将所有数据传输到客户端,您可以通过增加Akka 的帧大小来实现。 Akka 是 Flink 在底层使用的消息传递库。为此,请在 flink-conf.yaml
中设置 akka.framesize
。默认值为 10485760 字节 (10 MB)。 akka.framesize: 100mb
会将其增加到 100 MB。
对于 Apache Flink 1.0,一些提交者已考虑取消此限制,并且已经有一个拉取请求使用另一种传输方式来传输大型物化数据集。
- 什么是任务槽,它们与并行度有何关系?
Flink 的默认配置为每个任务管理器启动一个任务槽。当您以本地模式启动 Scala shell 时,它只会启动一个任务管理器。因此任务槽的总数是一个。当您将并行度更改为 N
时,您至少需要 N
个任务槽才能并行执行此操作。因此,要么增加 flink-conf.yaml
中的任务槽数,要么启动额外的任务管理器。如果你只是在本地运行,我建议你简单地增加任务槽的数量。有关详细信息,请参阅 http://flink.apache.org.
上的 Flink 文档
edit:如果你运行 Scala-Shell,一个嵌入式Flink集群启动时只有一个任务管理器。您可以使用 ./bin/start-local.sh
启动本地集群,然后使用 Scala shell 的主机和端口参数连接到它(主机:localhost,端口:6123)。
- 我正在使用 Flink Interactive Shell 来执行 WordCount。它适用于 10MB 的文件大小。但是对于 100MB 的文件,shell 抛出 NullPointerException:
:
java.lang.NullPointerException
at org.apache.flink.api.common.accumulators.SerializedListAccumulator.deserializeList(SerializedListAccumulator.java:93)
at org.apache.flink.api.scala.DataSet.collect(DataSet.scala:549)
at .<init>(<console>:22)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:734)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:983)
at scala.tools.nsc.interpreter.IMain.loadAndRunReq(IMain.scala:573)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:604)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:568)
at scala.tools.nsc.interpreter.ILoop.reallyInterpret(ILoop.scala:760)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:805)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:717)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:601)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.reflect.io.Streamable$Chars$class.applyReader(Streamable.scala:104)
at scala.reflect.io.File.applyReader(File.scala:82)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply$mcV$sp(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:130)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop.savingReader(ILoop.scala:135)
at scala.tools.nsc.interpreter.ILoop.interpretAllFrom(ILoop.scala:596)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:660)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop.withFile(ILoop.scala:653)
at scala.tools.nsc.interpreter.ILoop.loadCommand(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.LoopCommands$LineCmd.apply(LoopCommands.scala:81)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:712)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:882)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:837)
at org.apache.flink.api.scala.FlinkShell$.startShell(FlinkShell.scala:84)
at org.apache.flink.api.scala.FlinkShell$.main(FlinkShell.scala:54)
at org.apache.flink.api.scala.FlinkShell.main(FlinkShell.scala)
我在 linux 系统(16MB RAM)上工作。那里可能有什么问题?
我的代码(改编自https://ci.apache.org/projects/flink/flink-docs-release-0.9/quickstart/scala_api_quickstart.html):
var filename = new String(<myFileName>)
var text = env.readTextFile(filename)
var counts = text.flatMap { _.toLowerCase.split("\W+") }.map { (_, 1) }.groupBy(0).sum(1)
var result = counts.collect()
- 我也注意到,flink只在一个核上执行程序。使用 env.getConfig.setParallelism(4) 和 运行 设置并行度后,程序再次发生另一个异常:
第 1 部分:
org.apache.flink.client.program.ProgramInvocationException: The program execution failed: Job execution failed.
at org.apache.flink.client.program.Client.run(Client.java:413)
at org.apache.flink.client.program.Client.run(Client.java:356)
at org.apache.flink.client.program.Client.run(Client.java:349)
at org.apache.flink.client.RemoteExecutor.executePlanWithJars(RemoteExecutor.java:89)
at org.apache.flink.client.RemoteExecutor.executePlan(RemoteExecutor.java:82)
at org.apache.flink.api.java.ScalaShellRemoteEnvironment.execute(ScalaShellRemoteEnvironment.java:68)
at org.apache.flink.api.java.ExecutionEnvironment.execute(ExecutionEnvironment.java:789)
at org.apache.flink.api.scala.ExecutionEnvironment.execute(ExecutionEnvironment.scala:576)
at org.apache.flink.api.scala.DataSet.collect(DataSet.scala:544)
at .<init>(<console>:28)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:734)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:983)
at scala.tools.nsc.interpreter.IMain.loadAndRunReq(IMain.scala:573)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:604)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:568)
at scala.tools.nsc.interpreter.ILoop.reallyInterpret(ILoop.scala:760)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:805)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:717)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:601)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.reflect.io.Streamable$Chars$class.applyReader(Streamable.scala:104)
at scala.reflect.io.File.applyReader(File.scala:82)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply$mcV$sp(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom$$anonfun$apply$mcV$sp.apply(ILoop.scala:598)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:130)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop$$anonfun$interpretAllFrom.apply(ILoop.scala:597)
at scala.tools.nsc.interpreter.ILoop.savingReader(ILoop.scala:135)
at scala.tools.nsc.interpreter.ILoop.interpretAllFrom(ILoop.scala:596)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:660)
at scala.tools.nsc.interpreter.ILoop$$anonfun$loadCommand.apply(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop.withFile(ILoop.scala:653)
at scala.tools.nsc.interpreter.ILoop.loadCommand(ILoop.scala:659)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.ILoop$$anonfun$standardCommands.apply(ILoop.scala:262)
at scala.tools.nsc.interpreter.LoopCommands$LineCmd.apply(LoopCommands.scala:81)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:712)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:581)
at scala.tools.nsc.interpreter.ILoop.innerLoop(ILoop.scala:588)
at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:591)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:882)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:837)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:837)
at org.apache.flink.api.scala.FlinkShell$.startShell(FlinkShell.scala:84)
at org.apache.flink.api.scala.FlinkShell$.main(FlinkShell.scala:54)
at org.apache.flink.api.scala.FlinkShell.main(FlinkShell.scala)
第 2 部分:
Caused by: org.apache.flink.runtime.client.JobExecutionException: Job execution failed.
at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages.applyOrElse(JobManager.scala:314)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at org.apache.flink.runtime.ActorLogMessages$$anon.apply(ActorLogMessages.scala:43)
at org.apache.flink.runtime.ActorLogMessages$$anon.apply(ActorLogMessages.scala:29)
at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
at org.apache.flink.runtime.ActorLogMessages$$anon.applyOrElse(ActorLogMessages.scala:29)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:92)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254)
at akka.dispatch.Mailbox.run(Mailbox.scala:221)
at akka.dispatch.Mailbox.exec(Mailbox.scala:231)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Caused by: org.apache.flink.runtime.jobmanager.scheduler.NoResourceAvailableException: Not enough free slots available to run the job. You can decrease the operator parallelism or increase the number of slots per TaskManager in the configuration. Task to schedule: < Attempt #0 (CHAIN DataSource (at .<init>(<console>:26) (org.apache.flink.api.java.io.TextInputFormat)) -> FlatMap (FlatMap at .<init>(<console>:27)) -> Map (Map at .<init>(<console>:27)) -> Combine(SUM(1)) (2/4)) @ (unassigned) - [SCHEDULED] > with groupID < fc507fbb50fea681c726ca1d824c7577 > in sharing group < SlotSharingGroup [fc507fbb50fea681c726ca1d824c7577, fb90f780c9d5a4a9dbf983cb06bec946, 52b8abe5a21ed808f0473a599d89f046] >. Resources available to scheduler: Number of instances=1, total number of slots=1, available slots=0
at org.apache.flink.runtime.jobmanager.scheduler.Scheduler.scheduleTask(Scheduler.java:250)
at org.apache.flink.runtime.jobmanager.scheduler.Scheduler.scheduleImmediately(Scheduler.java:126)
at org.apache.flink.runtime.executiongraph.Execution.scheduleForExecution(Execution.java:271)
at org.apache.flink.runtime.executiongraph.ExecutionVertex.scheduleForExecution(ExecutionVertex.java:430)
at org.apache.flink.runtime.executiongraph.ExecutionJobVertex.scheduleAll(ExecutionJobVertex.java:307)
at org.apache.flink.runtime.executiongraph.ExecutionGraph.scheduleForExecution(ExecutionGraph.java:508)
at org.apache.flink.runtime.jobmanager.JobManager.org$apache$flink$runtime$jobmanager$JobManager$$submitJob(JobManager.scala:606)
at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages.applyOrElse(JobManager.scala:190)
... 18 more
这是否意味着taskmanager.numberOfTaskSlots?在我的flink-conf.yaml中这个key是设置成4的。但是在shell中怎么设置呢?
你问了两个问题:
- 为什么
print()
对大DataSet
不起作用?
当您在 DataSet
上使用 count()
、collect()
或 print()
时,所有在任务管理器上分区的数据都必须通过工作经理给客户。最好只将这些方法用于测试或实现小 DataSet
s。对于大数据,请使用 Apache Flink 中提供的接收器之一,例如writeAsTextFile(..)
。对于每个并行任务,将创建一个输出文件。
如果您仍然想将所有数据传输到客户端,您可以通过增加Akka 的帧大小来实现。 Akka 是 Flink 在底层使用的消息传递库。为此,请在 flink-conf.yaml
中设置 akka.framesize
。默认值为 10485760 字节 (10 MB)。 akka.framesize: 100mb
会将其增加到 100 MB。
对于 Apache Flink 1.0,一些提交者已考虑取消此限制,并且已经有一个拉取请求使用另一种传输方式来传输大型物化数据集。
- 什么是任务槽,它们与并行度有何关系?
Flink 的默认配置为每个任务管理器启动一个任务槽。当您以本地模式启动 Scala shell 时,它只会启动一个任务管理器。因此任务槽的总数是一个。当您将并行度更改为 N
时,您至少需要 N
个任务槽才能并行执行此操作。因此,要么增加 flink-conf.yaml
中的任务槽数,要么启动额外的任务管理器。如果你只是在本地运行,我建议你简单地增加任务槽的数量。有关详细信息,请参阅 http://flink.apache.org.
edit:如果你运行 Scala-Shell,一个嵌入式Flink集群启动时只有一个任务管理器。您可以使用 ./bin/start-local.sh
启动本地集群,然后使用 Scala shell 的主机和端口参数连接到它(主机:localhost,端口:6123)。