为什么我的神经网络对正输入给出负输出?

Why is my neural network giving negative outputs for positive inputs?

我正在使用用 C++ 编写的神经网络库(称为 FANN)来尝试学习和预测数学序列。它是通过 Node.js 使用库的包装器实现的。在这个特定的例子中,我试图通过将位置作为输入并将数值作为输出来让神经网络学习斐波那契数列。我的网络代码如下:

// This neural network calculates the fibonacci sequence
var net = new fanntom.standard(1,3,1);

var data = [
  [[0], [0]],
  [[1], [1]],
  [[2], [1]],
  [[3], [2]],
  [[4], [3]],
  [[5], [5]],
  [[6], [8]],
  [[7], [13]],
  [[8], [21]],
  [[9], [34]]
]

net.activation_function_hidden('FANN_LINEAR');
net.activation_function_output('FANN_LINEAR');
net.train(data, { error: 0.00001 })

;[0,1,2,3,4,5,6,7,8,9].forEach(function(a) {
    var c = net.run([a]);
    console.log("fibonacci sequence position " + a + " -> " + c)
})

这是我收到的输出示例:

Max epochs   100000. Desired error: 0.0000100000.
Epochs            1. Current error: 187.3569030762. Bit fail 9.
Epochs         1000. Current error: 34.0731391907. Bit fail 8.
Epochs         2000. Current error: 34.0791511536. Bit fail 8.
Epochs         3000. Current error: 34.0858230591. Bit fail 8.
Epochs         4000. Current error: 34.0767517090. Bit fail 8.
Epochs         5000. Current error: 34.0764961243. Bit fail 8.
Epochs         6000. Current error: 34.0817642212. Bit fail 8.
Epochs         7000. Current error: 34.0817031860. Bit fail 8.
Epochs         8000. Current error: 34.0721969604. Bit fail 8.
Epochs         9000. Current error: 34.0795860291. Bit fail 8.
Epochs        10000. Current error: 34.0741653442. Bit fail 8.
Epochs        11000. Current error: 34.0833320618. Bit fail 8.
Epochs        12000. Current error: 34.0826034546. Bit fail 8.
Epochs        13000. Current error: 34.0909080505. Bit fail 8.
Epochs        14000. Current error: 34.0811843872. Bit fail 8.
Epochs        15000. Current error: 34.0729255676. Bit fail 8.
Epochs        16000. Current error: 34.0812034607. Bit fail 8.
Epochs        17000. Current error: 34.0855636597. Bit fail 8.
Epochs        18000. Current error: 34.0725784302. Bit fail 8.
Epochs        19000. Current error: 34.0898971558. Bit fail 8.
Epochs        20000. Current error: 34.0742073059. Bit fail 8.
Epochs        21000. Current error: 34.0820236206. Bit fail 8.
Epochs        22000. Current error: 34.0867233276. Bit fail 8.
Epochs        23000. Current error: 34.0676040649. Bit fail 8.
Epochs        24000. Current error: 34.0834121704. Bit fail 8.
Epochs        25000. Current error: 34.0862617493. Bit fail 8.
Epochs        26000. Current error: 34.0691108704. Bit fail 8.
Epochs        27000. Current error: 34.0897636414. Bit fail 8.
Epochs        28000. Current error: 34.0828247070. Bit fail 8.
Epochs        29000. Current error: 34.0744514465. Bit fail 8.
Epochs        30000. Current error: 34.0876007080. Bit fail 8.
Epochs        31000. Current error: 34.0852851868. Bit fail 8.
Epochs        32000. Current error: 34.0892257690. Bit fail 8.
Epochs        33000. Current error: 34.0835494995. Bit fail 8.
Epochs        34000. Current error: 34.0838394165. Bit fail 8.
Epochs        35000. Current error: 34.0851097107. Bit fail 8.
Epochs        36000. Current error: 34.0754585266. Bit fail 8.
Epochs        37000. Current error: 34.0893363953. Bit fail 8.
Epochs        38000. Current error: 34.0729141235. Bit fail 8.
Epochs        39000. Current error: 34.0780258179. Bit fail 8.
Epochs        40000. Current error: 34.0776443481. Bit fail 8.
Epochs        41000. Current error: 34.0812759399. Bit fail 8.
Epochs        42000. Current error: 34.0707893372. Bit fail 8.
Epochs        43000. Current error: 34.0810317993. Bit fail 8.
Epochs        44000. Current error: 34.0846099854. Bit fail 8.
Epochs        45000. Current error: 34.0794601440. Bit fail 8.
Epochs        46000. Current error: 34.0818710327. Bit fail 8.
Epochs        47000. Current error: 34.0692596436. Bit fail 8.
Epochs        48000. Current error: 34.0687141418. Bit fail 8.
Epochs        49000. Current error: 34.0702171326. Bit fail 8.
Epochs        50000. Current error: 34.0730400085. Bit fail 8.
Epochs        51000. Current error: 34.0896568298. Bit fail 8.
Epochs        52000. Current error: 34.0715599060. Bit fail 8.
Epochs        53000. Current error: 34.0734481812. Bit fail 8.
Epochs        54000. Current error: 34.0772285461. Bit fail 8.
Epochs        55000. Current error: 34.0646171570. Bit fail 8.
Epochs        56000. Current error: 34.0669212341. Bit fail 8.
Epochs        57000. Current error: 34.0733718872. Bit fail 8.
Epochs        58000. Current error: 34.0881729126. Bit fail 8.
Epochs        59000. Current error: 34.0861282349. Bit fail 8.
Epochs        60000. Current error: 34.0846023560. Bit fail 8.
Epochs        61000. Current error: 34.0738449097. Bit fail 8.
Epochs        62000. Current error: 34.0877456665. Bit fail 8.
Epochs        63000. Current error: 34.0803222656. Bit fail 8.
Epochs        64000. Current error: 34.0794219971. Bit fail 8.
Epochs        65000. Current error: 34.0926132202. Bit fail 8.
Epochs        66000. Current error: 34.0831146240. Bit fail 8.
Epochs        67000. Current error: 34.0780830383. Bit fail 8.
Epochs        68000. Current error: 34.0757255554. Bit fail 8.
Epochs        69000. Current error: 34.0820083618. Bit fail 8.
Epochs        70000. Current error: 34.0746269226. Bit fail 8.
Epochs        71000. Current error: 34.0959663391. Bit fail 8.
Epochs        72000. Current error: 34.0699691772. Bit fail 8.
Epochs        73000. Current error: 34.0816230774. Bit fail 8.
Epochs        74000. Current error: 34.0853195190. Bit fail 8.
Epochs        75000. Current error: 34.0910835266. Bit fail 8.
Epochs        76000. Current error: 34.0766525269. Bit fail 8.
Epochs        77000. Current error: 34.0885848999. Bit fail 8.
Epochs        78000. Current error: 34.0684432983. Bit fail 8.
Epochs        79000. Current error: 34.0836944580. Bit fail 8.
Epochs        80000. Current error: 34.0931396484. Bit fail 8.
Epochs        81000. Current error: 34.0903816223. Bit fail 8.
Epochs        82000. Current error: 34.0796318054. Bit fail 8.
Epochs        83000. Current error: 34.0709342957. Bit fail 8.
Epochs        84000. Current error: 34.0812988281. Bit fail 8.
Epochs        85000. Current error: 34.0859451294. Bit fail 8.
Epochs        86000. Current error: 34.0641326904. Bit fail 8.
Epochs        87000. Current error: 34.0925521851. Bit fail 8.
Epochs        88000. Current error: 34.0828132629. Bit fail 8.
Epochs        89000. Current error: 34.0705337524. Bit fail 8.
Epochs        90000. Current error: 34.0698318481. Bit fail 8.
Epochs        91000. Current error: 34.0850410461. Bit fail 8.
Epochs        92000. Current error: 34.0921783447. Bit fail 8.
Epochs        93000. Current error: 34.0679855347. Bit fail 8.
Epochs        94000. Current error: 34.0932426453. Bit fail 8.
Epochs        95000. Current error: 34.0735969543. Bit fail 8.
Epochs        96000. Current error: 34.0687332153. Bit fail 8.
Epochs        97000. Current error: 34.0628662109. Bit fail 8.
Epochs        98000. Current error: 34.0813598633. Bit fail 8.
Epochs        99000. Current error: 34.0901985168. Bit fail 8.
Epochs       100000. Current error: 34.0652198792. Bit fail 8.
fibonacci sequence position 0 -> -3.7995970795170027
fibonacci sequence position 1 -> -1.3996559488192886
fibonacci sequence position 2 -> 1.0002851818784273
fibonacci sequence position 3 -> 3.4002263125761414
fibonacci sequence position 4 -> 5.800167443273858
fibonacci sequence position 5 -> 8.200108573971574
fibonacci sequence position 6 -> 10.60004970466929
fibonacci sequence position 7 -> 12.999990835367003
fibonacci sequence position 8 -> 15.39993196606472
fibonacci sequence position 9 -> 17.799873096762436

我的问题是,如果所有输入都是正值,神经网络如何产生负值输出?另外,为什么误差这么大,尤其是第一个epoch?

输出可能为负,因为它是输入、权重和传递函数的组合。权重随机初始化为平均值 0,因此其中大约一半是负数。由于它们是随机初始化的,因此您预计在第一次训练之前会出现巨大的错误。简直就是猜测。

顺便说一句,您的错误在 1000 次迭代后稳定下来。考虑到问题域的大小,它可能在 50 次迭代后稳定下来。您可能花费了比必要时间多 2000 倍的时间。