在 radial.plot() 上绘制标准误差

Plotting standard error on radial.plot()

我正在使用 Rplotrix-packageradial.plot 函数。有谁知道实现标准错误栏的直接方法。即使每个径向位置有多个数据点,这可能导致 SE-bar 部分重叠(见下图),该解决方案也必须有效。

现在图表看起来像这样:

使用代码:

library(plotrix)
ppp <- matrix(runif(1:16, 10, 60), nrow=2, ncol=8)
kl <- c(0, pi/4, pi/2, pi*0.75,pi, pi+pi/4,pi+pi/2, pi+pi*0.75)
plot_rt_soa7 <- radial.plot(ppp,rp.type="p",radial.pos=kl,
                label.pos=kl,start=pi/2,
                labels=1:8,radial.lim=c(-10,65),main="SOA 7")
                legend(45,50,c("T-oben", "T-unten"),col=1:2,lty=1)

错误栏可能看起来像像这样: (来自 How to plot error bars in polar coordinates in python?

如有任何帮助,我们将不胜感激

这里是一些基本代码,可以绘制 'x'(正交于半径)和 'y'(平行于半径)尺寸的误差线,以及一个中心值点。它不使用 plotrix 包来绘制错误栏,而是使用 R 基本图形。您必须提供尺寸的错误或注释掉绘制意外错误的代码部分。线宽、颜色、点颜色和点形状有几个图形参数。下面提供了示例图表。

library(plotrix)
set.seed(10) # seed for reproducable graph
ppp <- matrix(runif(1:16, 10, 60), nrow=2, ncol=8)
kl <- c(0, pi/4, pi/2, pi*0.75,pi, pi+pi/4,pi+pi/2, pi+pi*0.75)
start <- pi/2 # know starting value for plotting points angularl
rad_low_lim <- -10 # used when computing values of the error lines and in plot limits
plot_rt_soa7 <- radial.plot(ppp,rp.type="p"
                            ,radial.pos=kl
                            ,label.pos=kl
                            ,start=start
                            ,labels=1:8
                            ,radial.lim=c(rad_low_lim,65)
                            ,main="SOA 7")
legend(40,120,c("T-oben", "T-unten"),col=1:2,lty=1)

# generating random error values for both x and y
error_ppp_y <- matrix(rnorm(16, 15, 5), nrow=2, ncol=8)
error_ppp_x <- matrix(rnorm(16, 10, 3), nrow=2, ncol=8)

bar_cols <- c('blue','green') # colors for bars
lwds <- c(4,2) # line weights for bars
pts_cols <- c('black','red') # colors for points
pts_pch <- c(19,17) # point pch

# loop over the number of rows (T-oben and T-unten)
for(j in 1:2){

  # loop over the observations
  for(i in 1:ncol(ppp)){

    # plotting the errors of the 'y' value
    # center value is determined and errors are rotated to make
    # parallel to the radius
    lines(c(ppp[j,i]+error_ppp_y[j,i]-rad_low_lim,ppp[j,i]-error_ppp_y[j,i]-rad_low_lim)*cos(kl[i]+start)
          ,c(ppp[j,i]+error_ppp_y[j,i]-rad_low_lim,ppp[j,i]-error_ppp_y[j,i]-rad_low_lim)*sin(kl[i]+start)
          ,lwd=lwds[j]
          ,col=bar_cols[j]
    )

    # plotting the 'x' errors that are orthognal to the radius
    # points are the "center" with the error values rotated to make them orthognal to the radius
    # comment out if not desired
    lines((ppp[j,i]-rad_low_lim)*cos(kl[i]+start)+c(error_ppp_x[j,i],-error_ppp_x[j,i])*cos(kl[i])
          ,(ppp[j,i]-rad_low_lim)*sin(kl[i]+start)+c(error_ppp_x[j,i],-error_ppp_x[j,i])*sin(kl[i])
          ,lwd=lwds[j]
          ,col=bar_cols[j]
    )

    # plotting points for the center
    # comment out if not desired
    points((ppp[j,i]-rad_low_lim)*cos(kl[i]+start)
          ,(ppp[j,i]-rad_low_lim)*sin(kl[i]+start)
          ,col=pts_cols[j]
          ,pch=pts_pch[j]
    )
  }
}