与 aws-java-sdk 链接时读取 json 文件时 Spark 崩溃

Spark crash while reading json file when linked with aws-java-sdk

config.json成为一个小的json文件:

{
    "toto": 1
}

我做了一个简单的代码,用sc.textFile读取json文件(因为文件可以在S3,本地或HDFS上,所以textFile很方便)

import org.apache.spark.{SparkContext, SparkConf}

object testAwsSdk {
  def main( args:Array[String] ):Unit = {
    val sparkConf = new SparkConf().setAppName("test-aws-sdk").setMaster("local[*]")
    val sc = new SparkContext(sparkConf)
    val json = sc.textFile("config.json") 
    println(json.collect().mkString("\n"))
  }
}

SBT 文件仅拉取 spark-core

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
)

程序按预期运行,将 config.json 的内容写入标准输出。

现在我想link也用aws-java-sdk,amazon的sdk访问S3。

libraryDependencies ++= Seq(
  "com.amazonaws" % "aws-java-sdk" % "1.10.30" % "compile",
  "org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
)

执行同样的代码,spark抛出如下异常。

Exception in thread "main" com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope)
 at [Source: {"id":"0","name":"textFile"}; line: 1, column: 1]
    at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148)
    at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843)
    at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533)
    at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220)
    at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245)
    at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143)
    at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439)
    at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666)
    at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558)
    at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578)
    at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:82)
    at org.apache.spark.rdd.RDDOperationScope$$anonfun.apply(RDDOperationScope.scala:133)
    at org.apache.spark.rdd.RDDOperationScope$$anonfun.apply(RDDOperationScope.scala:133)
    at scala.Option.map(Option.scala:145)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:133)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
    at org.apache.spark.SparkContext.withScope(SparkContext.scala:709)
    at org.apache.spark.SparkContext.hadoopFile(SparkContext.scala:1012)
    at org.apache.spark.SparkContext$$anonfun$textFile.apply(SparkContext.scala:827)
    at org.apache.spark.SparkContext$$anonfun$textFile.apply(SparkContext.scala:825)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
    at org.apache.spark.SparkContext.withScope(SparkContext.scala:709)
    at org.apache.spark.SparkContext.textFile(SparkContext.scala:825)
    at testAwsSdk$.main(testAwsSdk.scala:11)
    at testAwsSdk.main(testAwsSdk.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

读取堆栈,似乎当 aws-java-sdk 被 linked 时,sc.textFile 检测到文件是 json 文件并尝试用杰克逊假设某种格式解析它,当然它找不到。我需要 link 与 aws-java-sdk,所以我的问题是:

1- 为什么添加 aws-java-sdk 会修改 spark-core 的行为?

2- 是否有解决方法(文件可以在 HDFS、S3 或本地)?

与亚马逊支持人员交谈。这是杰克逊图书馆的一个依赖问题。在 SBT 中,覆盖 jackson:

libraryDependencies ++= Seq( 
"com.amazonaws" % "aws-java-sdk" % "1.10.30" % "compile",
"org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
) 

dependencyOverrides ++= Set( 
"com.fasterxml.jackson.core" % "jackson-databind" % "2.4.4" 
) 

他们的回答: 我们已经在 Mac、Ec2 (redhat AMI) 实例和 EMR (Amazon Linux) 上完成了此操作。 3 不同的环境。问题的根本原因是 sbt 构建了一个依赖图,然后通过驱逐旧版本并选择最新版本的依赖库来处理版本冲突问题。在这种情况下,spark 依赖于 2.4 版本的 jackson 库,而 AWS SDK 需要 2.5。因此存在版本冲突,sbt 逐出 spark 的依赖版本(较旧)并选择 AWS SDK 版本(最新)。

添加到,如果您不想使用固定版本的 Jackson(也许将来您会升级 Spark)但仍想丢弃来自 AWS 的版本,您可以执行以下操作以下:

libraryDependencies ++= Seq( 
  "com.amazonaws" % "aws-java-sdk" % "1.10.30" % "compile" excludeAll (
    ExclusionRule("com.fasterxml.jackson.core", "jackson-databind")
  ),
  "org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
)