围绕给定坐标旋转像素
Rotate the pixels around a given coordinate
前段时间做了一个太阳系动画,现在正在重写。我将为质量添加重力效果,为了使效果可见,我将背景变成了网格。
我将添加两种不同的效果;捏和旋转。我正在学习 Geek Office Dog: Hello swirl! (A swirl effect tutorial in javascript) 上的教程。循序渐进,首先,我想了解旋转是如何工作的。
这是从站点摘录的简单旋转演示:jsFiddle. The code seemed chaotic to me, so I modified and simplified it: jsFiddle。
var canvas = document.getElementById("canvas");
var context = canvas.getContext("2d");
var img = new Image();
img.src = document.getElementById("test-image").src;
img.onload = function () {
context.drawImage(img, 0, 0);
originalImageData = context.getImageData(0, 0, canvas.width, canvas.height);
originalPixels = originalImageData.data;
transformedImageData = context.createImageData(originalImageData);
transformedPixels = transformedImageData.data;
originX = 100;
originY = 100;
radius = 50;
// copying the original pixels into transformed pixels
for (var y = 0; y < originalImageData.height; y++) {
for (var x = 0; x < originalImageData.width; x++) {
var position = (y * originalImageData.width + x) * 4;
transformedPixels[position + 0] = originalPixels[position + 0];
transformedPixels[position + 1] = originalPixels[position + 1];
transformedPixels[position + 2] = originalPixels[position + 2];
transformedPixels[position + 3] = originalPixels[position + 3];
}
}
// Iterate over the interest square region
for (var y = -radius; y < radius; y++) {
for (var x = -radius; x < radius; x++) {
// Check if the pixel is inside the effect circle
if (x * x + y * y <= radius * radius) {
// Get the pixel array position
var sourcePosition = (y + originY) * originalImageData.width + x + originX;
sourcePosition *= 4;
// Transform the pixel cartesian coordinates (x, y) to polar coordinates (r, angle)
var r = Math.sqrt(x * x + y * y);
var angle = Math.atan2(y, x);
// convert the angle from radian to degree
var degrees = (angle * 180.0) / Math.PI;
// rotate the pixels
degrees -= 30.0;
// Transform back from polar coordinates to cartesian
angle = (degrees * Math.PI) / 180.0;
var newY = Math.floor(r * Math.sin(angle));
var newX = Math.floor(r * Math.cos(angle));
// Get the new pixel location
var destPosition = (newY + originY) * originalImageData.width + newX + originX;
destPosition *= 4;
transformedPixels[destPosition + 0] = originalPixels[sourcePosition + 0];
transformedPixels[destPosition + 1] = originalPixels[sourcePosition + 1];
transformedPixels[destPosition + 2] = originalPixels[sourcePosition + 2];
transformedPixels[destPosition + 3] = originalPixels[sourcePosition + 3];
}
}
}
context.putImageData(transformedImageData, 0, 0);
};
<table>
<tr>
<td>image</td>
<td>image</td>
<td>canvas</td>
</tr>
<tr>
<td><img id="test-image" border="1" src=""></td>
<td><img id="image-area" border="1" src="http://i1115.photobucket.com/albums/k544/akinuri/download%201.png"></td>
<td><canvas id="canvas" style="border: 1px solid blue" width="227" height="213"></canvas></td>
</tr>
</table>
我没看懂 // Iterate over the interest square region
部分。为什么它在 -radius
和 radius
之间循环以及 x * x + y * y <= radius * radius
究竟如何检查像素是否在圆圈内?
我无法想象那部分代码在我脑海中发生了什么。然而
更新: 好的,所以在考虑了一下之后,我认为在循环中:
// Iterate over the interest square region
for (var y = -radius; y < radius; y++) {
for (var x = -radius; x < radius; x++) {
// Check if the pixel is inside the effect circle
if (x * x + y * y <= radius * radius) {
我们实际上不是在迭代图像上的区域,而是一个理论区域。
并检查当前 (x,y) 是否在圆圈内。如果是,在下一行代码中,我们计算 (x,y) 在图像上的实际位置:
// Get the pixel array position
var sourcePosition = (y + originY) * originalImageData.width + x + originX;
sourcePosition *= 4;
Loops (+ if) 只是给我们圆内每个像素的坐标,然后我们将这些 (x,y) 坐标移动 (originX, originY) 值,这样我们就可以得到实际坐标图片。
我说的对吗?我是吗? (请原谅我的激动:)
首先是简单的部分:)
x * x + y * y <= radius * radius
这就是毕达哥拉斯:
现在,如果您看那张图片,也很明显 x 和 y 在 -r 和 r 之间摆动,对吗? :) 想象一下那些坐标在每个最左上角的...圆圈的点:)
前段时间做了一个太阳系动画,现在正在重写。我将为质量添加重力效果,为了使效果可见,我将背景变成了网格。
我将添加两种不同的效果;捏和旋转。我正在学习 Geek Office Dog: Hello swirl! (A swirl effect tutorial in javascript) 上的教程。循序渐进,首先,我想了解旋转是如何工作的。
这是从站点摘录的简单旋转演示:jsFiddle. The code seemed chaotic to me, so I modified and simplified it: jsFiddle。
var canvas = document.getElementById("canvas");
var context = canvas.getContext("2d");
var img = new Image();
img.src = document.getElementById("test-image").src;
img.onload = function () {
context.drawImage(img, 0, 0);
originalImageData = context.getImageData(0, 0, canvas.width, canvas.height);
originalPixels = originalImageData.data;
transformedImageData = context.createImageData(originalImageData);
transformedPixels = transformedImageData.data;
originX = 100;
originY = 100;
radius = 50;
// copying the original pixels into transformed pixels
for (var y = 0; y < originalImageData.height; y++) {
for (var x = 0; x < originalImageData.width; x++) {
var position = (y * originalImageData.width + x) * 4;
transformedPixels[position + 0] = originalPixels[position + 0];
transformedPixels[position + 1] = originalPixels[position + 1];
transformedPixels[position + 2] = originalPixels[position + 2];
transformedPixels[position + 3] = originalPixels[position + 3];
}
}
// Iterate over the interest square region
for (var y = -radius; y < radius; y++) {
for (var x = -radius; x < radius; x++) {
// Check if the pixel is inside the effect circle
if (x * x + y * y <= radius * radius) {
// Get the pixel array position
var sourcePosition = (y + originY) * originalImageData.width + x + originX;
sourcePosition *= 4;
// Transform the pixel cartesian coordinates (x, y) to polar coordinates (r, angle)
var r = Math.sqrt(x * x + y * y);
var angle = Math.atan2(y, x);
// convert the angle from radian to degree
var degrees = (angle * 180.0) / Math.PI;
// rotate the pixels
degrees -= 30.0;
// Transform back from polar coordinates to cartesian
angle = (degrees * Math.PI) / 180.0;
var newY = Math.floor(r * Math.sin(angle));
var newX = Math.floor(r * Math.cos(angle));
// Get the new pixel location
var destPosition = (newY + originY) * originalImageData.width + newX + originX;
destPosition *= 4;
transformedPixels[destPosition + 0] = originalPixels[sourcePosition + 0];
transformedPixels[destPosition + 1] = originalPixels[sourcePosition + 1];
transformedPixels[destPosition + 2] = originalPixels[sourcePosition + 2];
transformedPixels[destPosition + 3] = originalPixels[sourcePosition + 3];
}
}
}
context.putImageData(transformedImageData, 0, 0);
};
<table>
<tr>
<td>image</td>
<td>image</td>
<td>canvas</td>
</tr>
<tr>
<td><img id="test-image" border="1" src=""></td>
<td><img id="image-area" border="1" src="http://i1115.photobucket.com/albums/k544/akinuri/download%201.png"></td>
<td><canvas id="canvas" style="border: 1px solid blue" width="227" height="213"></canvas></td>
</tr>
</table>
我没看懂 // Iterate over the interest square region
部分。为什么它在 -radius
和 radius
之间循环以及 x * x + y * y <= radius * radius
究竟如何检查像素是否在圆圈内?
我无法想象那部分代码在我脑海中发生了什么。然而
更新: 好的,所以在考虑了一下之后,我认为在循环中:
// Iterate over the interest square region
for (var y = -radius; y < radius; y++) {
for (var x = -radius; x < radius; x++) {
// Check if the pixel is inside the effect circle
if (x * x + y * y <= radius * radius) {
我们实际上不是在迭代图像上的区域,而是一个理论区域。
并检查当前 (x,y) 是否在圆圈内。如果是,在下一行代码中,我们计算 (x,y) 在图像上的实际位置:
// Get the pixel array position
var sourcePosition = (y + originY) * originalImageData.width + x + originX;
sourcePosition *= 4;
Loops (+ if) 只是给我们圆内每个像素的坐标,然后我们将这些 (x,y) 坐标移动 (originX, originY) 值,这样我们就可以得到实际坐标图片。
我说的对吗?我是吗? (请原谅我的激动:)
首先是简单的部分:)
x * x + y * y <= radius * radius
这就是毕达哥拉斯:
现在,如果您看那张图片,也很明显 x 和 y 在 -r 和 r 之间摆动,对吗? :) 想象一下那些坐标在每个最左上角的...圆圈的点:)