寻找 pi - 使用 Machin 的公式。不同的迭代给出相同的结果
finding pi - using Machin's formula. Different iterations are giving same result
我写了几个程序来寻找圆周率,这个是最先进的。我使用了 Machin 的公式,pi/4 = 4(arc-tan(1/5)) - (arc-tan(1/239))
.
问题是无论我进行多少次迭代,我都会得到相同的结果,而且我似乎不明白为什么。
#include "stdafx.h"
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
double arctan_series(int x, double y) // x is the # of iterations while y is the number
{
double pi = y;
double temp_Pi;
for (int i = 1, j = 3; i < x; i++, j += 2)
{
temp_Pi = pow(y, j) / j; //the actual value of the iteration
if (i % 2 != 0) // for every odd iteration that subtracts
{
pi -= temp_Pi;
}
else // for every even iteration that adds
{
pi += temp_Pi;
}
}
pi = pi * 4;
return pi;
}
double calculations(int x) // x is the # of iterations
{
double value_1, value_2, answer;
value_1 = arctan_series(x, 0.2);
value_2 = arctan_series(x, 1.0 / 239.0);
answer = (4 * value_1) - (value_2);
return answer;
}
int main()
{
double pi;
int iteration_num;
cout << "Enter the number of iterations: ";
cin >> iteration_num;
pi = calculations(iteration_num);
cout << "Pi has the value of: " << setprecision(100) << fixed << pi << endl;
return 0;
}
那个方法收敛的很快。如果您首先从最小的数字开始,您将获得更高的准确性。由于 5^23 > 2^53(double 的尾数中的位数),最大迭代次数可能是 12(13 不会有任何区别)。从较小的数字开始,您将获得更高的准确性。改行有注释:
double arctan_series(int x, double y)
{
double pi = y;
double temp_Pi;
for (int i = 1, j = x*2-1; i < x; i++, j -= 2) // changed this line
{
temp_Pi = pow(y, j) / j;
if ((j & 2) != 0) // changed this line
{
pi -= temp_Pi;
}
else
{
pi += temp_Pi;
}
}
pi = pi * 4;
return pi;
}
对于双打,设置精度 > 18 没有意义。
如果您想要一个需要更多迭代才能收敛的替代公式,请使用 pi/4 = arc-tan(1/2) + arc-tan(1/3),这将需要大约 24 次迭代。
我无法重现你的问题,但这里有一些经过清理的代码,其中包含一些 C++11 惯用语和更好的变量名。
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
// double arctan_series(int x, double y) // x is the # of iterations while y is the number
// then why not name the parameters accoringly? In math we usually use x for the parameter.
// prefer C++11 and the auto notation wherever possible
auto arctan_series(int iterations, double x) -> double
{
// note, that we don't need any temporaries here.
// note, that this loop will never run, when iterations = 1
// is that really what was intended?
for (int i = 1, j = 3; i < iterations; i++, j += 2)
{
// declare variables as late as possible and always initialize them
auto t = pow(x, j) / j;
// in such simple cases I prefer ?: over if-else. Your milage may vary
x += (i % 2 != 0) ? -t : t;
}
return x * 4;
}
// double calculations(int x) // x is the # of iterations
// then why not name the parameter accordingly
// BTW rename the function to what it is supposed to do
auto approximate_pi(int iterations) -> double
{
// we don't need all of these temporaries. Just write one expression.
return 4 * arctan_series(iterations, 0.2) - arctan_series(iterations, 1.0 / 239.0);
}
auto main(int, char**) -> int
{
cout << "Enter the number of iterations: ";
// in C++ you should declare variables as late as possible
// and always initialize them.
int iteration_num = 0;
cin >> iteration_num;
cout << "Pi has the value of: "
<< setprecision(100) << fixed
<< approximate_pi(iteration_num) << endl;
return 0;
}
当您删除我的解释性注释时,您会发现生成的代码更简洁、更易于阅读,因此更易于维护。
我试了一下:
Enter the number of iterations: 3
Pi has the value of: 3.1416210293250346197169164952356368303298950195312500000000000000000000000000000000000000000000000000
Enter the number of iterations: 2
Pi has the value of: 3.1405970293260603298790556436870247125625610351562500000000000000000000000000000000000000000000000000
Enter the number of iterations: 7
Pi has the value of: 3.1415926536235549981768144789384678006172180175781250000000000000000000000000000000000000000000000000
Enter the number of iterations: 42
Pi has the value of: 3.1415926535897940041763831686694175004959106445312500000000000000000000000000000000000000000000000000
如你所见,我显然对不同的迭代次数得到了不同的结果。
如果你们中的一些人感兴趣,这是另一种方式。循环计算函数的积分:sqrt(1-x²)
表示半径为1的半圆,然后我们用面积乘以2。最后我们得到了圆的表面,也就是圆周率。
#include <iomanip>
#include <cmath>
#define f(x) sqrt(1-pow(x,2))
double integral(int a, int b, int p)
{
double d=pow(10, -p), s=0;
for (double x=a ; x+d<=b ; x+=d)
{
s+=f(x)+f(x+d);
}
s*=d/2.0;
return s;
}
int main()
{
cout << "PI=" << setprecision (9) << 2.0*integral(-1,1,6) << endl;
}
我写了几个程序来寻找圆周率,这个是最先进的。我使用了 Machin 的公式,pi/4 = 4(arc-tan(1/5)) - (arc-tan(1/239))
.
问题是无论我进行多少次迭代,我都会得到相同的结果,而且我似乎不明白为什么。
#include "stdafx.h"
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
double arctan_series(int x, double y) // x is the # of iterations while y is the number
{
double pi = y;
double temp_Pi;
for (int i = 1, j = 3; i < x; i++, j += 2)
{
temp_Pi = pow(y, j) / j; //the actual value of the iteration
if (i % 2 != 0) // for every odd iteration that subtracts
{
pi -= temp_Pi;
}
else // for every even iteration that adds
{
pi += temp_Pi;
}
}
pi = pi * 4;
return pi;
}
double calculations(int x) // x is the # of iterations
{
double value_1, value_2, answer;
value_1 = arctan_series(x, 0.2);
value_2 = arctan_series(x, 1.0 / 239.0);
answer = (4 * value_1) - (value_2);
return answer;
}
int main()
{
double pi;
int iteration_num;
cout << "Enter the number of iterations: ";
cin >> iteration_num;
pi = calculations(iteration_num);
cout << "Pi has the value of: " << setprecision(100) << fixed << pi << endl;
return 0;
}
那个方法收敛的很快。如果您首先从最小的数字开始,您将获得更高的准确性。由于 5^23 > 2^53(double 的尾数中的位数),最大迭代次数可能是 12(13 不会有任何区别)。从较小的数字开始,您将获得更高的准确性。改行有注释:
double arctan_series(int x, double y)
{
double pi = y;
double temp_Pi;
for (int i = 1, j = x*2-1; i < x; i++, j -= 2) // changed this line
{
temp_Pi = pow(y, j) / j;
if ((j & 2) != 0) // changed this line
{
pi -= temp_Pi;
}
else
{
pi += temp_Pi;
}
}
pi = pi * 4;
return pi;
}
对于双打,设置精度 > 18 没有意义。
如果您想要一个需要更多迭代才能收敛的替代公式,请使用 pi/4 = arc-tan(1/2) + arc-tan(1/3),这将需要大约 24 次迭代。
我无法重现你的问题,但这里有一些经过清理的代码,其中包含一些 C++11 惯用语和更好的变量名。
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
// double arctan_series(int x, double y) // x is the # of iterations while y is the number
// then why not name the parameters accoringly? In math we usually use x for the parameter.
// prefer C++11 and the auto notation wherever possible
auto arctan_series(int iterations, double x) -> double
{
// note, that we don't need any temporaries here.
// note, that this loop will never run, when iterations = 1
// is that really what was intended?
for (int i = 1, j = 3; i < iterations; i++, j += 2)
{
// declare variables as late as possible and always initialize them
auto t = pow(x, j) / j;
// in such simple cases I prefer ?: over if-else. Your milage may vary
x += (i % 2 != 0) ? -t : t;
}
return x * 4;
}
// double calculations(int x) // x is the # of iterations
// then why not name the parameter accordingly
// BTW rename the function to what it is supposed to do
auto approximate_pi(int iterations) -> double
{
// we don't need all of these temporaries. Just write one expression.
return 4 * arctan_series(iterations, 0.2) - arctan_series(iterations, 1.0 / 239.0);
}
auto main(int, char**) -> int
{
cout << "Enter the number of iterations: ";
// in C++ you should declare variables as late as possible
// and always initialize them.
int iteration_num = 0;
cin >> iteration_num;
cout << "Pi has the value of: "
<< setprecision(100) << fixed
<< approximate_pi(iteration_num) << endl;
return 0;
}
当您删除我的解释性注释时,您会发现生成的代码更简洁、更易于阅读,因此更易于维护。
我试了一下:
Enter the number of iterations: 3
Pi has the value of: 3.1416210293250346197169164952356368303298950195312500000000000000000000000000000000000000000000000000
Enter the number of iterations: 2
Pi has the value of: 3.1405970293260603298790556436870247125625610351562500000000000000000000000000000000000000000000000000
Enter the number of iterations: 7
Pi has the value of: 3.1415926536235549981768144789384678006172180175781250000000000000000000000000000000000000000000000000
Enter the number of iterations: 42
Pi has the value of: 3.1415926535897940041763831686694175004959106445312500000000000000000000000000000000000000000000000000
如你所见,我显然对不同的迭代次数得到了不同的结果。
如果你们中的一些人感兴趣,这是另一种方式。循环计算函数的积分:sqrt(1-x²)
表示半径为1的半圆,然后我们用面积乘以2。最后我们得到了圆的表面,也就是圆周率。
#include <iomanip>
#include <cmath>
#define f(x) sqrt(1-pow(x,2))
double integral(int a, int b, int p)
{
double d=pow(10, -p), s=0;
for (double x=a ; x+d<=b ; x+=d)
{
s+=f(x)+f(x+d);
}
s*=d/2.0;
return s;
}
int main()
{
cout << "PI=" << setprecision (9) << 2.0*integral(-1,1,6) << endl;
}