C++ 中的重要数字
Significant figures in C++
我写了一个程序来计算一系列的值,所有的值都是特别长的双精度值。我想打印这些值,每个值显示 15 个有效数字。这里有一些代码可以说明我遇到的问题:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
double x = 0.12345678901234567890;
double y = 1.12345678901234567890;
cout << setprecision(15) << fixed << x << "\t" << y << "\n";
return 0;
}
只有 setprecision 尾随零不会显示,所以我添加了 fixed,正如我在本网站的其他答案中看到的那样。但是,现在我似乎只有 15 位小数,对于不是 0.something 的值,这不是我想要的。您可以从上面的输出中看到这一点:
0.123456789012346 1.123456789012346
第一个数字有 15 个数字,第二个数字有 16 个。我该怎么做才能解决这个问题?
编辑:我被特别要求使用 setprecision,所以我无法尝试 cout.precision。
您可以简单地使用科学(注意 14 而不是 15):
std::cout << std::scientific << std::setprecision(14) << -0.123456789012345678 << std::endl;
std::cout << std::scientific << std::setprecision(14) << -1.234567890123456789 << std::endl;
-1.23456789012346e-01
-1.23456789012346e+00
或者您可以使用函数:
#include <iostream>
#include <vector>
#include <iomanip>
#include <string>
#include <sstream>
enum vis_opt { scientific, decimal, decimal_relaxed };
std::string figures(double x, int nfig, vis_opt vo=decimal) {
std::stringstream str;
str << std::setprecision(nfig-1) << std::scientific << x;
std::string s = str.str();
if ( vo == scientific )
return s;
else {
std::stringstream out;
std::size_t pos;
int ileft = std::stoi(s,&pos);
std::string dec = s.substr(pos + 1, nfig - 1);
int e = std::stoi(s.substr(pos + nfig + 1));
if ( e < 0 ) {
std::string zeroes(-1-e,'0');
if ( ileft < 0 )
out << "-0." << zeroes << -ileft << dec;
else
out << "0." << zeroes << ileft << dec;
} else if ( e == 0) {
out << ileft << '.' << dec;
} else if ( e < ( nfig - 1) ) {
out << ileft << dec.substr(0,e) << '.' << dec.substr(e);
} else if ( e == ( nfig - 1) ) {
out << ileft << dec;
} else {
if ( vo == decimal_relaxed) {
out << s;
} else {
out << ileft << dec << std::string(e - nfig + 1,'0');
}
}
return out.str();
}
}
int main() {
std::vector<double> test_cases = {
-123456789012345,
-12.34567890123456789,
-0.1234567890123456789,
-0.0001234,
0,
0.0001234,
0.1234567890123456789,
12.34567890123456789,
1.234567890123456789,
12345678901234,
123456789012345,
1234567890123456789.0,
};
for ( auto i : test_cases) {
std::cout << std::setw(22) << std::right << figures(i,15,scientific);
std::cout << std::setw(22) << std::right << figures(i,15) << std::endl;
}
return 0;
}
我的输出是:
-1.23456789012345e+14 -123456789012345
-1.23456789012346e+01 -12.3456789012346
-1.23456789012346e-01 -0.123456789012346
-1.23400000000000e-04 -0.000123400000000000
0.00000000000000e+00 0.00000000000000
1.23400000000000e-04 0.000123400000000000
1.23456789012346e-01 0.123456789012346
1.23456789012346e+01 12.3456789012346
1.23456789012346e+00 1.23456789012346
1.23456789012340e+13 12345678901234.0
1.23456789012345e+14 123456789012345
1.23456789012346e+18 1234567890123460000
我在计算整数有效数字然后将浮动有效数字设置为 X - <integer sig figs>
:
方面取得了一些成功
编辑
为了解决 Bob 的评论,我将考虑更多边缘案例。我对代码进行了一些重构,以根据前导零和尾随零调整字段精度。我相信对于非常小的值(比如 std::numeric_limits<double>::epsilon
:
int AdjustPrecision(int desiredPrecision, double _in)
{
// case of all zeros
if (_in == 0.0)
return desiredPrecision;
// handle leading zeros before decimal place
size_t truncated = static_cast<size_t>(_in);
while(truncated != 0)
{
truncated /= 10;
--desiredPrecision;
}
// handle trailing zeros after decimal place
_in *= 10;
while(static_cast<size_t>(_in) == 0)
{
_in *= 10;
++desiredPrecision;
}
return desiredPrecision;
}
有更多测试:
double a = 0.000123456789012345;
double b = 123456789012345;
double x = 0.12345678901234567890;
double y = 1.12345678901234567890;
double z = 11.12345678901234567890;
std::cout.setf( std::ios::fixed, std:: ios::floatfield);
std::cout << "a: " << std::setprecision(AdjustPrecision(15, a)) << a << std::endl;
std::cout << "b: " << std::setprecision(AdjustPrecision(15, b)) << b << std::endl;
std::cout << "x " << std::setprecision(AdjustPrecision(15, x)) << x << std::endl;
std::cout << "y " << std::setprecision(AdjustPrecision(15, y)) << y << std::endl;
std::cout << "z: " << std::setprecision(AdjustPrecision(15, z)) << z << std::endl;
输出:
a: 0.000123456789012345
b: 123456789012345
x 0.123456789012346
y 1.12345678901235
z: 11.1234567890123
int GetIntegerSigFigs(double _in)
{
int toReturn = 0;
int truncated = static_cast<int>(_in);
while(truncated != 0)
{
truncated /= 10;
++toReturn;
}
return toReturn;
}
(我确定我遗漏了一些边缘情况)
然后使用它:
double x = 0.12345678901234567890;
double y = 1.12345678901234567890;
std::cout << td::setprecision(15-GetIntegerSigFigs(x)) << x
<< "\t" << std::setprecision(15-GetIntegerSigFigs(y)) << y << "\n";
打印:
0.123456789012346 1.12345678901235
我写了一个程序来计算一系列的值,所有的值都是特别长的双精度值。我想打印这些值,每个值显示 15 个有效数字。这里有一些代码可以说明我遇到的问题:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
double x = 0.12345678901234567890;
double y = 1.12345678901234567890;
cout << setprecision(15) << fixed << x << "\t" << y << "\n";
return 0;
}
只有 setprecision 尾随零不会显示,所以我添加了 fixed,正如我在本网站的其他答案中看到的那样。但是,现在我似乎只有 15 位小数,对于不是 0.something 的值,这不是我想要的。您可以从上面的输出中看到这一点:
0.123456789012346 1.123456789012346
第一个数字有 15 个数字,第二个数字有 16 个。我该怎么做才能解决这个问题?
编辑:我被特别要求使用 setprecision,所以我无法尝试 cout.precision。
您可以简单地使用科学(注意 14 而不是 15):
std::cout << std::scientific << std::setprecision(14) << -0.123456789012345678 << std::endl;
std::cout << std::scientific << std::setprecision(14) << -1.234567890123456789 << std::endl;
-1.23456789012346e-01
-1.23456789012346e+00
或者您可以使用函数:
#include <iostream>
#include <vector>
#include <iomanip>
#include <string>
#include <sstream>
enum vis_opt { scientific, decimal, decimal_relaxed };
std::string figures(double x, int nfig, vis_opt vo=decimal) {
std::stringstream str;
str << std::setprecision(nfig-1) << std::scientific << x;
std::string s = str.str();
if ( vo == scientific )
return s;
else {
std::stringstream out;
std::size_t pos;
int ileft = std::stoi(s,&pos);
std::string dec = s.substr(pos + 1, nfig - 1);
int e = std::stoi(s.substr(pos + nfig + 1));
if ( e < 0 ) {
std::string zeroes(-1-e,'0');
if ( ileft < 0 )
out << "-0." << zeroes << -ileft << dec;
else
out << "0." << zeroes << ileft << dec;
} else if ( e == 0) {
out << ileft << '.' << dec;
} else if ( e < ( nfig - 1) ) {
out << ileft << dec.substr(0,e) << '.' << dec.substr(e);
} else if ( e == ( nfig - 1) ) {
out << ileft << dec;
} else {
if ( vo == decimal_relaxed) {
out << s;
} else {
out << ileft << dec << std::string(e - nfig + 1,'0');
}
}
return out.str();
}
}
int main() {
std::vector<double> test_cases = {
-123456789012345,
-12.34567890123456789,
-0.1234567890123456789,
-0.0001234,
0,
0.0001234,
0.1234567890123456789,
12.34567890123456789,
1.234567890123456789,
12345678901234,
123456789012345,
1234567890123456789.0,
};
for ( auto i : test_cases) {
std::cout << std::setw(22) << std::right << figures(i,15,scientific);
std::cout << std::setw(22) << std::right << figures(i,15) << std::endl;
}
return 0;
}
我的输出是:
-1.23456789012345e+14 -123456789012345
-1.23456789012346e+01 -12.3456789012346
-1.23456789012346e-01 -0.123456789012346
-1.23400000000000e-04 -0.000123400000000000
0.00000000000000e+00 0.00000000000000
1.23400000000000e-04 0.000123400000000000
1.23456789012346e-01 0.123456789012346
1.23456789012346e+01 12.3456789012346
1.23456789012346e+00 1.23456789012346
1.23456789012340e+13 12345678901234.0
1.23456789012345e+14 123456789012345
1.23456789012346e+18 1234567890123460000
我在计算整数有效数字然后将浮动有效数字设置为 X - <integer sig figs>
:
编辑
为了解决 Bob 的评论,我将考虑更多边缘案例。我对代码进行了一些重构,以根据前导零和尾随零调整字段精度。我相信对于非常小的值(比如 std::numeric_limits<double>::epsilon
:
int AdjustPrecision(int desiredPrecision, double _in)
{
// case of all zeros
if (_in == 0.0)
return desiredPrecision;
// handle leading zeros before decimal place
size_t truncated = static_cast<size_t>(_in);
while(truncated != 0)
{
truncated /= 10;
--desiredPrecision;
}
// handle trailing zeros after decimal place
_in *= 10;
while(static_cast<size_t>(_in) == 0)
{
_in *= 10;
++desiredPrecision;
}
return desiredPrecision;
}
有更多测试:
double a = 0.000123456789012345;
double b = 123456789012345;
double x = 0.12345678901234567890;
double y = 1.12345678901234567890;
double z = 11.12345678901234567890;
std::cout.setf( std::ios::fixed, std:: ios::floatfield);
std::cout << "a: " << std::setprecision(AdjustPrecision(15, a)) << a << std::endl;
std::cout << "b: " << std::setprecision(AdjustPrecision(15, b)) << b << std::endl;
std::cout << "x " << std::setprecision(AdjustPrecision(15, x)) << x << std::endl;
std::cout << "y " << std::setprecision(AdjustPrecision(15, y)) << y << std::endl;
std::cout << "z: " << std::setprecision(AdjustPrecision(15, z)) << z << std::endl;
输出:
a: 0.000123456789012345
b: 123456789012345
x 0.123456789012346
y 1.12345678901235
z: 11.1234567890123
int GetIntegerSigFigs(double _in)
{
int toReturn = 0;
int truncated = static_cast<int>(_in);
while(truncated != 0)
{
truncated /= 10;
++toReturn;
}
return toReturn;
}
(我确定我遗漏了一些边缘情况)
然后使用它:
double x = 0.12345678901234567890;
double y = 1.12345678901234567890;
std::cout << td::setprecision(15-GetIntegerSigFigs(x)) << x
<< "\t" << std::setprecision(15-GetIntegerSigFigs(y)) << y << "\n";
打印:
0.123456789012346 1.12345678901235