通过 data.table 循环 grepl() (R)

Looping grepl() through data.table (R)

我有一个存储为 data.table DT 的数据集,如下所示:

print(DT)
   category            industry
1: administration      admin
2: nurse practitioner  truck
3: trucking            truck
4: administration      admin
5: warehousing         nurse
6: warehousing         admin
7: trucking            truck
8: nurse practitioner  nurse         
9: nurse practitioner  truck 

我想将 table 减少为行业与类别匹配的行。我的一般方法是使用 grepl() 正则表达式匹配字符串 '^{{INDUSTRY}}[a-z ]+$'DT$category 的每一行,并插入 DT$industry 的每个相应行来代替 {{INDUSTRY}}在正则表达式字符串中使用 infuse()。我努力寻找一个圆滑的 data.table 解决方案,它可以正确循环遍历 table 并进行行内比较,所以我求助于 for 循环来完成工作:

template <- "^{{IND}}[a-z ]+$"
DT[,match := FALSE,]
for (i in seq(1,length(DT$category))) {
    ind <- DT[i]$industry
    categ <- d.daily[i]$category
    if (grepl(infuse(IND=ind,template),categ)){
        DT[i]$match <- TRUE
    }
}
DT<- DT[match==TRUE]
print(DT)
       category            industry
1: administration      admin
2: trucking            truck
3: administration      admin
4: trucking            truck
5: nurse practitioner  nurse         

不过,我相信这可以用更好的方式完成。关于如何利用 data.table 包的功能实现此结果的任何建议?据我了解,在这种情况下,使用包的方法可能比 for 循环更有效。

您可以使用 stringi::stri_detect_fixed()。它在 strpattern.

上被矢量化
DT[stringi::stri_detect_fixed(category, industry)]
#              category industry
# 1:     administration    admin
# 2:           trucking    truck
# 3:     administration    admin
# 4:           trucking    truck
# 5: nurse practitioner    nurse 

或者,可以使用 stringr::str_detect()。它还对其两个参数进行了矢量化。

library(stringr)
DT[str_detect(category, fixed(industry))]

或者基础 R 选项是 运行 grepl()mapply()

DT[mapply(grepl, industry, category, fixed = TRUE)]

或者您可以使用 Vectorize(grepl) 获得相同的结果。

DT[Vectorize(grepl)(industry, category, fixed = TRUE)]

所有这些都会产生相同的结果。

数据:

DT <- structure(list(category = c("administration", "nurse practitioner", 
"trucking", "administration", "warehousing", "warehousing", "trucking", 
"nurse practitioner", "nurse practitioner"), industry = c("admin", 
"truck", "truck", "admin", "nurse", "admin", "truck", "nurse", 
"truck")), .Names = c("category", "industry"), class = "data.frame", row.names = c(NA, 
-9L))
setDT(DT)

只要匹配始终基于 category 字符串的开头,就可以正常工作:

dt[substring(category, 1, nchar(industry)) == industry]
#              category industry
# 1:     administration    admin
# 2:           trucking    truck
# 3:     administration    admin
# 4:           trucking    truck
# 5: nurse practitioner    nurse

Data.table擅长分组运算;我认为这就是它的作用,假设您有很多行与同一行业有关:

DT[ DT[, .I[grep(industry, category)], by = industry]$V1 ]

这使用了the current idiom for subsetting by group, thanks to @eddi .


评论。这些可能有进一步的帮助:

  • 如果您有很多行具有相同的行业类别组合,请尝试 by=.(industry,category)

  • 尝试用其他东西代替 grep(例如 Ken 和 Richard 的回答中的选项)。