沿下三角 numpy 数组的每一行翻转非零值
Flip non-zero values along each row of a lower triangular numpy array
我有一个下三角数组,比如B:
B = np.array([[1,0,0,0],[.25,.75,0,0], [.1,.2,.7,0],[.2,.3,.4,.1]])
>>> B
array([[ 1. , 0. , 0. , 0. ],
[ 0.25, 0.75, 0. , 0. ],
[ 0.1 , 0.2 , 0.7 , 0. ],
[ 0.2 , 0.3 , 0.4 , 0.1 ]])
我想把它翻转成这样:
array([[ 1. , 0. , 0. , 0. ],
[ 0.75, 0.25, 0. , 0. ],
[ 0.7 , 0.2 , 0.1 , 0. ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
也就是说,我想取所有正值,并在正值内反转,留下尾随零。这不是 fliplr
所做的:
>>> np.fliplr(B)
array([[ 0. , 0. , 0. , 1. ],
[ 0. , 0. , 0.75, 0.25],
[ 0. , 0.7 , 0.2 , 0.1 ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
有什么建议吗?此外,我正在使用的实际数组类似于 B.shape = (200,20,4,4)
而不是 (4,4)
。每个 (4,4)
块看起来都像上面的示例(200 中有不同的数字,20 个不同的条目)。
这个怎么样:
# row, column indices of the lower triangle of B
r, c = np.tril_indices_from(B)
# flip the column indices by subtracting them from r, which is equal to the number
# of nonzero elements in each row minus one
B[r, c] = B[r, r - c]
print(repr(B))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.75, 0.25, 0. , 0. ],
# [ 0.7 , 0.2 , 0.1 , 0. ],
# [ 0.1 , 0.4 , 0.3 , 0.2 ]])
同样的方法将推广到任意 N 维数组,由多个下三角子矩阵组成:
# creates a (200, 20, 4, 4) array consisting of tiled copies of B
B2 = np.tile(B[None, None, ...], (200, 20, 1, 1))
print(repr(B2[100, 10]))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.25, 0.75, 0. , 0. ],
# [ 0.1 , 0.2 , 0.7 , 0. ],
# [ 0.2 , 0.3 , 0.4 , 0.1 ]])
r, c = np.tril_indices_from(B2[0, 0])
B2[:, :, r, c] = B2[:, :, r, r - c]
print(repr(B2[100, 10]))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.75, 0.25, 0. , 0. ],
# [ 0.7 , 0.2 , 0.1 , 0. ],
# [ 0.1 , 0.4 , 0.3 , 0.2 ]])
对于上三角矩阵,您可以简单地从 c
中减去 r
,例如:
r, c = np.triu_indices_from(B.T)
B.T[r, c] = B.T[c - r, c]
这是 2D
数组情况的一种方法 -
mask = np.tril(np.ones((4,4),dtype=bool))
out = np.zeros_like(B)
out[mask] = B[:,::-1][mask[:,::-1]]
您可以使用相同的 2D
掩码通过 masking
最后两个轴将其扩展为 3D
数组情况,就像这样 -
out = np.zeros_like(B)
out[:,mask] = B[:,:,::-1][:,mask[:,::-1]]
.. 和 4D
数组情况类似,就像这样 -
out = np.zeros_like(B)
out[:,:,mask] = B[:,:,:,::-1][:,:,mask[:,::-1]]
可以看出,我们将掩蔽过程保持到(4,4)
的最后两个轴,解决方案基本保持不变。
样本运行-
In [95]: B
Out[95]:
array([[ 1. , 0. , 0. , 0. ],
[ 0.25, 0.75, 0. , 0. ],
[ 0.1 , 0.2 , 0.7 , 0. ],
[ 0.2 , 0.3 , 0.4 , 0.1 ]])
In [96]: mask = np.tril(np.ones((4,4),dtype=bool))
...: out = np.zeros_like(B)
...: out[mask] = B[:,::-1][mask[:,::-1]]
...:
In [97]: out
Out[97]:
array([[ 1. , 0. , 0. , 0. ],
[ 0.75, 0.25, 0. , 0. ],
[ 0.7 , 0.2 , 0.1 , 0. ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
我有一个下三角数组,比如B:
B = np.array([[1,0,0,0],[.25,.75,0,0], [.1,.2,.7,0],[.2,.3,.4,.1]])
>>> B
array([[ 1. , 0. , 0. , 0. ],
[ 0.25, 0.75, 0. , 0. ],
[ 0.1 , 0.2 , 0.7 , 0. ],
[ 0.2 , 0.3 , 0.4 , 0.1 ]])
我想把它翻转成这样:
array([[ 1. , 0. , 0. , 0. ],
[ 0.75, 0.25, 0. , 0. ],
[ 0.7 , 0.2 , 0.1 , 0. ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
也就是说,我想取所有正值,并在正值内反转,留下尾随零。这不是 fliplr
所做的:
>>> np.fliplr(B)
array([[ 0. , 0. , 0. , 1. ],
[ 0. , 0. , 0.75, 0.25],
[ 0. , 0.7 , 0.2 , 0.1 ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
有什么建议吗?此外,我正在使用的实际数组类似于 B.shape = (200,20,4,4)
而不是 (4,4)
。每个 (4,4)
块看起来都像上面的示例(200 中有不同的数字,20 个不同的条目)。
这个怎么样:
# row, column indices of the lower triangle of B
r, c = np.tril_indices_from(B)
# flip the column indices by subtracting them from r, which is equal to the number
# of nonzero elements in each row minus one
B[r, c] = B[r, r - c]
print(repr(B))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.75, 0.25, 0. , 0. ],
# [ 0.7 , 0.2 , 0.1 , 0. ],
# [ 0.1 , 0.4 , 0.3 , 0.2 ]])
同样的方法将推广到任意 N 维数组,由多个下三角子矩阵组成:
# creates a (200, 20, 4, 4) array consisting of tiled copies of B
B2 = np.tile(B[None, None, ...], (200, 20, 1, 1))
print(repr(B2[100, 10]))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.25, 0.75, 0. , 0. ],
# [ 0.1 , 0.2 , 0.7 , 0. ],
# [ 0.2 , 0.3 , 0.4 , 0.1 ]])
r, c = np.tril_indices_from(B2[0, 0])
B2[:, :, r, c] = B2[:, :, r, r - c]
print(repr(B2[100, 10]))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.75, 0.25, 0. , 0. ],
# [ 0.7 , 0.2 , 0.1 , 0. ],
# [ 0.1 , 0.4 , 0.3 , 0.2 ]])
对于上三角矩阵,您可以简单地从 c
中减去 r
,例如:
r, c = np.triu_indices_from(B.T)
B.T[r, c] = B.T[c - r, c]
这是 2D
数组情况的一种方法 -
mask = np.tril(np.ones((4,4),dtype=bool))
out = np.zeros_like(B)
out[mask] = B[:,::-1][mask[:,::-1]]
您可以使用相同的 2D
掩码通过 masking
最后两个轴将其扩展为 3D
数组情况,就像这样 -
out = np.zeros_like(B)
out[:,mask] = B[:,:,::-1][:,mask[:,::-1]]
.. 和 4D
数组情况类似,就像这样 -
out = np.zeros_like(B)
out[:,:,mask] = B[:,:,:,::-1][:,:,mask[:,::-1]]
可以看出,我们将掩蔽过程保持到(4,4)
的最后两个轴,解决方案基本保持不变。
样本运行-
In [95]: B
Out[95]:
array([[ 1. , 0. , 0. , 0. ],
[ 0.25, 0.75, 0. , 0. ],
[ 0.1 , 0.2 , 0.7 , 0. ],
[ 0.2 , 0.3 , 0.4 , 0.1 ]])
In [96]: mask = np.tril(np.ones((4,4),dtype=bool))
...: out = np.zeros_like(B)
...: out[mask] = B[:,::-1][mask[:,::-1]]
...:
In [97]: out
Out[97]:
array([[ 1. , 0. , 0. , 0. ],
[ 0.75, 0.25, 0. , 0. ],
[ 0.7 , 0.2 , 0.1 , 0. ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])