沿下三角 numpy 数组的每一行翻转非零值

Flip non-zero values along each row of a lower triangular numpy array

我有一个下三角数组,比如B:

B = np.array([[1,0,0,0],[.25,.75,0,0], [.1,.2,.7,0],[.2,.3,.4,.1]])

>>> B
array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.25,  0.75,  0.  ,  0.  ],
       [ 0.1 ,  0.2 ,  0.7 ,  0.  ],
       [ 0.2 ,  0.3 ,  0.4 ,  0.1 ]])

我想把它翻转成这样:

array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.75,  0.25,  0.  ,  0.  ],
       [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
       [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

也就是说,我想取所有正值,并在正值内反转,留下尾随零。这不是 fliplr 所做的:

>>> np.fliplr(B)
array([[ 0.  ,  0.  ,  0.  ,  1.  ],
       [ 0.  ,  0.  ,  0.75,  0.25],
       [ 0.  ,  0.7 ,  0.2 ,  0.1 ],
       [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

有什么建议吗?此外,我正在使用的实际数组类似于 B.shape = (200,20,4,4) 而不是 (4,4)。每个 (4,4) 块看起来都像上面的示例(200 中有不同的数字,20 个不同的条目)。

这个怎么样:

# row, column indices of the lower triangle of B
r, c = np.tril_indices_from(B)

# flip the column indices by subtracting them from r, which is equal to the number
# of nonzero elements in each row minus one
B[r, c] = B[r, r - c]

print(repr(B))
# array([[ 1.  ,  0.  ,  0.  ,  0.  ],
#        [ 0.75,  0.25,  0.  ,  0.  ],
#        [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
#        [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

同样的方法将推广到任意 N 维数组,由多个下三角子矩阵组成:

# creates a (200, 20, 4, 4) array consisting of tiled copies of B
B2 = np.tile(B[None, None, ...], (200, 20, 1, 1))

print(repr(B2[100, 10]))
# array([[ 1.  ,  0.  ,  0.  ,  0.  ],
#        [ 0.25,  0.75,  0.  ,  0.  ],
#        [ 0.1 ,  0.2 ,  0.7 ,  0.  ],
#        [ 0.2 ,  0.3 ,  0.4 ,  0.1 ]])

r, c = np.tril_indices_from(B2[0, 0])
B2[:, :, r, c] = B2[:, :, r, r - c]

print(repr(B2[100, 10]))
# array([[ 1.  ,  0.  ,  0.  ,  0.  ],
#        [ 0.75,  0.25,  0.  ,  0.  ],
#        [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
#        [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

对于上三角矩阵,您可以简单地从 c 中减去 r,例如:

r, c = np.triu_indices_from(B.T)
B.T[r, c] = B.T[c - r, c]

这是 2D 数组情况的一种方法 -

mask = np.tril(np.ones((4,4),dtype=bool))
out = np.zeros_like(B)
out[mask] = B[:,::-1][mask[:,::-1]]

您可以使用相同的 2D 掩码通过 masking 最后两个轴将其扩展为 3D 数组情况,就像这样 -

out = np.zeros_like(B)
out[:,mask] = B[:,:,::-1][:,mask[:,::-1]]

.. 和 4D 数组情况类似,就像这样 -

out = np.zeros_like(B)
out[:,:,mask] = B[:,:,:,::-1][:,:,mask[:,::-1]]

可以看出,我们将掩蔽过程保持到(4,4)的最后两个轴,解决方案基本保持不变。

样本运行-

In [95]: B
Out[95]: 
array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.25,  0.75,  0.  ,  0.  ],
       [ 0.1 ,  0.2 ,  0.7 ,  0.  ],
       [ 0.2 ,  0.3 ,  0.4 ,  0.1 ]])

In [96]: mask = np.tril(np.ones((4,4),dtype=bool))
    ...: out = np.zeros_like(B)
    ...: out[mask] = B[:,::-1][mask[:,::-1]]
    ...: 

In [97]: out
Out[97]: 
array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.75,  0.25,  0.  ,  0.  ],
       [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
       [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])