正在计算 pandas 中的新列
Calculating a new column in pandas
我有一个历史选举结果的数据框,我想计算一个额外的列,该列对获胜候选人的记录应用基本数学公式,并为其余候选人复制一个值。
这是我试过的代码:
va2 = va1[['contest_id', 'year', 'district', 'office', 'party_code',
'pct_vote', 'winner']].drop_duplicates()
va2['vote_waste'] = va2['winner'].map(lambda x: (-.5) + va2['pct_vote']
if x == 'w' else va2['pct_vote'])
这给了我一个新列,其中每一行包含每一行中每一行的计算。
这是因为您正在对系列 va2['pct_vote']
操作元素 x
。您需要的是对 va2['winner']
和 va2['pct_vote']
元素进行操作。您可以使用 apply
来实现。
将 a
视为 winner
,将 b
视为 pct_vote
df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
df
Out[23]:
a b c
0 1 2 3
1 4 5 6
df['new'] = df[['a','b']].apply(lambda x : (-0.5)+x[1] if x[0] ==1 else x[1],axis=1)
df
Out[42]:
a b c new
0 1 2 3 1.5
1 4 5 6 5.0
你可以使用numpy.where()来实现你想要的:
import pandas as pd
import numpy as np
data = {
'winner': pd.Series(['w', 'l', 'l', 'w', 'l']),
'pct_vote': pd.Series([0.4, 0.9, 0.9, 0.4, 0.9]),
'party_code': pd.Series([10, 20, 30, 40, 50])
}
df = pd.DataFrame(data)
print(df)
party_code pct_vote winner
0 10 0.4 w
1 20 0.9 l
2 30 0.9 l
3 40 0.4 w
4 50 0.9 l
df['vote_waste'] = np.where(
df['winner'] == 'w',
df['pct_vote'] - 0.5, #if condition is true, use this value
df['pct_vote'] #if condition is false, use this value
)
print(df)
party_code pct_vote winner vote_waste
0 10 0.4 w -0.1
1 20 0.9 l 0.9
2 30 0.9 l 0.9
3 40 0.4 w -0.1
4 50 0.9 l 0.9
我有一个历史选举结果的数据框,我想计算一个额外的列,该列对获胜候选人的记录应用基本数学公式,并为其余候选人复制一个值。
这是我试过的代码:
va2 = va1[['contest_id', 'year', 'district', 'office', 'party_code',
'pct_vote', 'winner']].drop_duplicates()
va2['vote_waste'] = va2['winner'].map(lambda x: (-.5) + va2['pct_vote']
if x == 'w' else va2['pct_vote'])
这给了我一个新列,其中每一行包含每一行中每一行的计算。
这是因为您正在对系列 va2['pct_vote']
操作元素 x
。您需要的是对 va2['winner']
和 va2['pct_vote']
元素进行操作。您可以使用 apply
来实现。
将 a
视为 winner
,将 b
视为 pct_vote
df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
df
Out[23]:
a b c
0 1 2 3
1 4 5 6
df['new'] = df[['a','b']].apply(lambda x : (-0.5)+x[1] if x[0] ==1 else x[1],axis=1)
df
Out[42]:
a b c new
0 1 2 3 1.5
1 4 5 6 5.0
你可以使用numpy.where()来实现你想要的:
import pandas as pd
import numpy as np
data = {
'winner': pd.Series(['w', 'l', 'l', 'w', 'l']),
'pct_vote': pd.Series([0.4, 0.9, 0.9, 0.4, 0.9]),
'party_code': pd.Series([10, 20, 30, 40, 50])
}
df = pd.DataFrame(data)
print(df)
party_code pct_vote winner
0 10 0.4 w
1 20 0.9 l
2 30 0.9 l
3 40 0.4 w
4 50 0.9 l
df['vote_waste'] = np.where(
df['winner'] == 'w',
df['pct_vote'] - 0.5, #if condition is true, use this value
df['pct_vote'] #if condition is false, use this value
)
print(df)
party_code pct_vote winner vote_waste
0 10 0.4 w -0.1
1 20 0.9 l 0.9
2 30 0.9 l 0.9
3 40 0.4 w -0.1
4 50 0.9 l 0.9