在 pylearn2 中使用 RBM 预训练 ANN

Pre-training ANN with RBM in pylearn2

我正在尝试使用 pylearn2 和 RBM 预训练来训练多层 ANN。我稍微修改了包含在 pylearn2\pylearn2\scripts\tutorials\deep_trainer 中的名为 run_deep_trainer 的脚本。我想要一个 4 层网,其中前 3 层由 500 GaussianBinaryRBM 制成,最后一个是 mlp.Softmax 层。

这是我创建的脚本:

from pylearn2.models.rbm import GaussianBinaryRBM
from pylearn2.models.softmax_regression import SoftmaxRegression
from pylearn2.models.mlp import Softmax
from pylearn2.training_algorithms.sgd import SGD
from pylearn2.costs.autoencoder import MeanSquaredReconstructionError
from pylearn2.termination_criteria import EpochCounter
from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix
from pylearn2.energy_functions.rbm_energy import GRBM_Type_1
from pylearn2.blocks import StackedBlocks
from pylearn2.datasets.transformer_dataset import TransformerDataset
from pylearn2.costs.ebm_estimation import SMD
from pylearn2.training_algorithms.sgd import MonitorBasedLRAdjuster
from pylearn2.train import Train
from optparse import OptionParser

import numpy

def get_dataset_timitConsSmall():
    print('loading timitConsSmall dataset...')

    template = \
        """!obj:pylearn2.datasets.timitConsSmall.timit.TIMIT {
classes_number: 32,
which_set: %s,
}"""
    trainset = yaml_parse.load(template % "train")
    # testset = yaml_parse.load(template % "test")

    print('...done loading timitConsSmall.')

    return trainset

def get_grbm(structure):
    n_input, n_output = structure
    config = {
        'nvis': n_input,
        'nhid': n_output,
        "irange": 0.05,
        "energy_function_class": GRBM_Type_1,
        "learn_sigma": True,
        "init_sigma": .4,
        "init_bias_hid": -2.,
        "mean_vis": False,
        "sigma_lr_scale": 1e-3
    }

    return GaussianBinaryRBM(**config)


def get_logistic_regressor(structure):
    n_input, n_output = structure

    layer = SoftmaxRegression(n_classes=n_output, irange=0.02, nvis=n_input)

    return layer

def get_mlp_softmax(structure):
    n_input, n_output = structure

    layer = Softmax(n_classes=n_output, irange=0.02, layer_name='y')

    return layer

def get_layer_trainer_softmax(layer, trainset):
    # configs on sgd

    config = {'learning_rate': 000.1,
              'cost': Default(),
              'batch_size': 100,
              'monitoring_batches': 10,
              'monitoring_dataset': trainset,
              'termination_criterion': EpochCounter(max_epochs=MAX_EPOCHS_SUPERVISED),
              'update_callbacks': None
              }

    train_algo = SGD(**config)
    model = layer
    return Train(model=model,
                 dataset=trainset,
                 algorithm=train_algo,
                 extensions=None)

def get_layer_trainer_logistic(layer, trainset):
    # configs on sgd

    config = {'learning_rate': 0.1,
              'cost': Default(),
              'batch_size': 10,
              'monitoring_batches': 10,
              'monitoring_dataset': trainset,
              'termination_criterion': EpochCounter(max_epochs=MAX_EPOCHS_SUPERVISED),
              'update_callbacks': None
              }

    train_algo = SGD(**config)
    model = layer
    return Train(model=model,
                 dataset=trainset,
                 algorithm=train_algo,
                 extensions=None)

def get_layer_trainer_sgd_rbm(layer, trainset):
    train_algo = SGD(
        learning_rate=1e-2,
        batch_size=100,
        # "batches_per_iter" : 2000,
        monitoring_batches=20,
        monitoring_dataset=trainset,
        cost=SMD(corruptor=GaussianCorruptor(stdev=0.4)),
        termination_criterion=EpochCounter(max_epochs=MAX_EPOCHS_UNSUPERVISED),
    )
    model = layer
    extensions = [MonitorBasedLRAdjuster()]
    return Train(model=model, algorithm=train_algo,
                 save_path='grbm.pkl', save_freq=1,
                 extensions=extensions, dataset=trainset)

def main(args=None):
    trainset = get_dataset_timitConsSmall()
    n_output = 32

    design_matrix = trainset.get_design_matrix()
    n_input = design_matrix.shape[1]

    # build layers
    layers = []
    structure = [[n_input, 500], [500, 500], [500, 500], [500, n_output]]
    # layer 0: gaussianRBM
    layers.append(get_grbm(structure[0]))
    # # layer 1: denoising AE
    # layers.append(get_denoising_autoencoder(structure[1]))
    # # layer 2: AE
    # layers.append(get_autoencoder(structure[2]))
    # # layer 3: logistic regression used in supervised training
    # layers.append(get_logistic_regressor(structure[3]))

    # layer 1: gaussianRBM
    layers.append(get_grbm(structure[1]))
    # layer 2: gaussianRBM
    layers.append(get_grbm(structure[2]))
    # layer 3: logistic regression used in supervised training
    # layers.append(get_logistic_regressor(structure[3]))
    layers.append(get_mlp_softmax(structure[3]))



    # construct training sets for different layers
    trainset = [trainset,
                TransformerDataset(raw=trainset, transformer=layers[0]),
                TransformerDataset(raw=trainset, transformer=StackedBlocks(layers[0:2])),
                TransformerDataset(raw=trainset, transformer=StackedBlocks(layers[0:3]))]

    # construct layer trainers
    layer_trainers = []
    layer_trainers.append(get_layer_trainer_sgd_rbm(layers[0], trainset[0]))
    # layer_trainers.append(get_layer_trainer_sgd_autoencoder(layers[1], trainset[1]))
    # layer_trainers.append(get_layer_trainer_sgd_autoencoder(layers[2], trainset[2]))
    layer_trainers.append(get_layer_trainer_sgd_rbm(layers[1], trainset[1]))
    layer_trainers.append(get_layer_trainer_sgd_rbm(layers[2], trainset[2]))
    # layer_trainers.append(get_layer_trainer_logistic(layers[3], trainset[3]))
    layer_trainers.append(get_layer_trainer_softmax(layers[3], trainset[3]))

    # unsupervised pretraining
    for i, layer_trainer in enumerate(layer_trainers[0:3]):
        print('-----------------------------------')
        print(' Unsupervised training layer %d, %s' % (i, layers[i].__class__))
        print('-----------------------------------')
        layer_trainer.main_loop()

    print('\n')
    print('------------------------------------------------------')
    print(' Unsupervised training done! Start supervised training...')
    print('------------------------------------------------------')
    print('\n')

    # supervised training
    layer_trainers[-1].main_loop()


if __name__ == '__main__':
    main()

无监督预训练部分正确,但有监督训练部分出错:

Traceback (most recent call last):
  File "run_deep_trainer.py", line 404, in <module>
    main()
  File "run_deep_trainer.py", line 400, in main
    layer_trainers[-1].main_loop()
  File "/home/gortolan/pylearn2/pylearn2/train.py", line 141, in main_loop
    self.setup()
  File "/home/gortolan/pylearn2/pylearn2/train.py", line 121, in setup
    self.algorithm.setup(model=self.model, dataset=self.dataset)
  File "/home/gortolan/pylearn2/pylearn2/training_algorithms/sgd.py", line 243, in setup
    inf_params = [param for param in model.get_params()
  File "/home/gortolan/pylearn2/pylearn2/models/model.py", line 503, in get_params
    return list(self._params)
AttributeError: 'Softmax' object has no attribute '_params'

如果我在最后一层使用SoftmaxRegression(作为模型),这意味着将函数get_mlp_softmax()get_layer_trainer_softmax()替换为get_logistic_regressor()get_layer_trainer_logistic(), 一切正常。

似乎模型 mlp.Softmax 没有通过函数 get_params().

return 参数 (_params)

有人知道如何解决这个问题吗?

问题是因为 SoftmaxRegressor 是模型,而 SoftmaxMLP 的层。一种修复它的方法是

def get_mlp_softmax(structure):
    n_input, n_output = structure

    layer = MLP(nvis=500, layers=[Softmax(n_classes=n_output, irange=0.02, layer_name='y')])

    return layer

其中 MLPmlp.MLP