Metropolis Hastings 线性回归模型
Metropolis Hastings for linear regression model
我正在尝试在 C 中实现用于简单线性回归的 Metropolis-Hastings 算法(不使用其他库(boost、Eigen 等)并且不使用二维数组)*。为了更好地测试跟踪图的 code/evaluation,我通过保留尽可能多的 C 代码重写了 R 的代码(见下文)。
不幸的是,链条没有收敛。我想知道是否
- 执行本身有错误吗?
- "just" 提案分布的错误选择?
假设是后者,我正在考虑如何找到好的提案分布参数(目前我已经选择了任意值)以便算法工作。即使像本例那样具有三个参数,也很难找到合适的参数。如果说 Gibbs 抽样不是替代方案,通常如何处理这个问题?
*我想将此代码用于 Cuda
#### posterior distribution
logPostDensity <- function(x, y, a, b, s2, N)
{
sumSqError = 0.0
for(i in 1:N)
{
sumSqError = sumSqError + (y[i] - (a + b*x[i]))^2
}
return(((-(N/2)+1) * log(s2)) + ((-0.5/s2) * sumSqError))
}
# x = x values
# y = actual datapoints
# N = sample size
# m = length of chain
# sigmaProp = uniform proposal for sigma squared
# paramAProp = uniform proposal for intercept
# paramBProp = uniform proposal for slope
mcmcSampling <- function(x,y,N,m,sigmaProp,paramAProp,paramBProp)
{
paramsA = vector("numeric",length=m) # intercept
paramsB = vector("numeric",length=m) # slope
s2 = vector("numeric",length=m) # sigma squared
paramsA[1] = 0
paramsB[1] = 0
s2[1] = 1
for(i in 2:m)
{
paramsA[i] = paramsA[i-1] + runif(1,-paramAProp,paramAProp)
if((logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N)
- logPostDensity(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N))
< log(runif(1)))
{
paramsA[i] = paramsA[i-1]
}
paramsB[i] = paramsB[i-1] + runif(1,-paramBProp,paramBProp)
if((logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N)
- logPostDensity(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N))
< log(runif(1)))
{
paramsB[i] = paramsB[i-1]
}
s2[i] = s2[i-1] + runif(1,-sigmaProp,sigmaProp)
if((s2[i] < 0) || (logPostDensity(x,y,paramsA[i],paramsB[i],s2[i],N)
- logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N))
< log(runif(1)))
{
s2[i] = s2[i-1]
}
}
res = data.frame(paramsA,paramsB,s2)
return(res)
}
#########################################
set.seed(321)
x <- runif(100)
y <- 2 + 5*x + rnorm(100)
summary(lm(y~x))
df <- mcmcSampling(x,y,10,5000,0.05,0.05,0.05)
par(mfrow=c(3,1))
plot(df$paramsA[3000:5000],type="l",main="intercept")
plot(df$paramsB[3000:5000],type="l",main="slope")
plot(df$s2[3000:5000],type="l",main="sigma")
截取部分 (paramsA) 有一个错误。其他一切都很好。我已经实施了 Alexey 在他的评论中提出的建议。解决方法如下:
pow <- function(x,y)
{
return(x^y)
}
#### posterior distribution
posteriorDistribution <- function(x, y, a, b,s2,N)
{
sumSqError <- 0.0
for(i in 1:N)
{
sumSqError <- sumSqError + pow(y[i] - (a + b*x[i]),2)
}
return((-((N/2)+1) * log(s2)) + ((-0.5/s2) * sumSqError))
}
# x <- x values
# y <- actual datapoints
# N <- sample size
# m <- length of chain
# sigmaProposalWidth <- width of uniform proposal dist for sigma squared
# paramAProposalWidth <- width of uniform proposal dist for intercept
# paramBProposalWidth <- width of uniform proposal dist for slope
mcmcSampling <- function(x,y,N,m,sigmaProposalWidth,paramAProposalWidth,paramBProposalWidth)
{
desiredAcc <- 0.44
paramsA <- vector("numeric",length=m) # intercept
paramsB <- vector("numeric",length=m) # slope
s2 <- vector("numeric",length=m) # sigma squared
paramsA[1] <- 0
paramsB[1] <- 0
s2[1] <- 1
accATot <- 0
accBTot <- 0
accS2Tot <- 0
for(i in 2:m)
{
paramsA[i] <- paramsA[i-1] + runif(1,-paramAProposalWidth,paramAProposalWidth)
accA <- 1
if((posteriorDistribution(x,y,paramsA[i],paramsB[i-1],s2[i-1],N) -
posteriorDistribution(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N)) < log(runif(1)))
{
paramsA[i] <- paramsA[i-1]
accA <- 0
}
accATot <- accATot + accA
paramsB[i] <- paramsB[i-1] + runif(1,-paramBProposalWidth,paramBProposalWidth)
accB <- 1
if((posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i-1],N) -
posteriorDistribution(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N)) < log(runif(1)))
{
paramsB[i] <- paramsB[i-1]
accB <- 0
}
accBTot <- accBTot + accB
s2[i] <- s2[i-1] + runif(1,-sigmaProposalWidth,sigmaProposalWidth)
accS2 <- 1
if((s2[i] < 0) || (posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i],N) -
posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i-1],N)) < log(runif(1)))
{
s2[i] <- s2[i-1]
accS2 <- 0
}
accS2Tot <- accS2Tot + accS2
if(i%%100==0)
{
paramAProposalWidth <- paramAProposalWidth * ((accATot/100)/desiredAcc)
paramBProposalWidth <- paramBProposalWidth * ((accBTot/100)/desiredAcc)
sigmaProposalWidth <- sigmaProposalWidth * ((accS2Tot/100)/desiredAcc)
accATot <- 0
accBTot <- 0
accS2Tot <- 0
}
}
res <- data.frame(paramsA,paramsB,s2)
return(res)
}
我正在尝试在 C 中实现用于简单线性回归的 Metropolis-Hastings 算法(不使用其他库(boost、Eigen 等)并且不使用二维数组)*。为了更好地测试跟踪图的 code/evaluation,我通过保留尽可能多的 C 代码重写了 R 的代码(见下文)。
不幸的是,链条没有收敛。我想知道是否
- 执行本身有错误吗?
- "just" 提案分布的错误选择?
假设是后者,我正在考虑如何找到好的提案分布参数(目前我已经选择了任意值)以便算法工作。即使像本例那样具有三个参数,也很难找到合适的参数。如果说 Gibbs 抽样不是替代方案,通常如何处理这个问题?
*我想将此代码用于 Cuda
#### posterior distribution
logPostDensity <- function(x, y, a, b, s2, N)
{
sumSqError = 0.0
for(i in 1:N)
{
sumSqError = sumSqError + (y[i] - (a + b*x[i]))^2
}
return(((-(N/2)+1) * log(s2)) + ((-0.5/s2) * sumSqError))
}
# x = x values
# y = actual datapoints
# N = sample size
# m = length of chain
# sigmaProp = uniform proposal for sigma squared
# paramAProp = uniform proposal for intercept
# paramBProp = uniform proposal for slope
mcmcSampling <- function(x,y,N,m,sigmaProp,paramAProp,paramBProp)
{
paramsA = vector("numeric",length=m) # intercept
paramsB = vector("numeric",length=m) # slope
s2 = vector("numeric",length=m) # sigma squared
paramsA[1] = 0
paramsB[1] = 0
s2[1] = 1
for(i in 2:m)
{
paramsA[i] = paramsA[i-1] + runif(1,-paramAProp,paramAProp)
if((logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N)
- logPostDensity(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N))
< log(runif(1)))
{
paramsA[i] = paramsA[i-1]
}
paramsB[i] = paramsB[i-1] + runif(1,-paramBProp,paramBProp)
if((logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N)
- logPostDensity(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N))
< log(runif(1)))
{
paramsB[i] = paramsB[i-1]
}
s2[i] = s2[i-1] + runif(1,-sigmaProp,sigmaProp)
if((s2[i] < 0) || (logPostDensity(x,y,paramsA[i],paramsB[i],s2[i],N)
- logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N))
< log(runif(1)))
{
s2[i] = s2[i-1]
}
}
res = data.frame(paramsA,paramsB,s2)
return(res)
}
#########################################
set.seed(321)
x <- runif(100)
y <- 2 + 5*x + rnorm(100)
summary(lm(y~x))
df <- mcmcSampling(x,y,10,5000,0.05,0.05,0.05)
par(mfrow=c(3,1))
plot(df$paramsA[3000:5000],type="l",main="intercept")
plot(df$paramsB[3000:5000],type="l",main="slope")
plot(df$s2[3000:5000],type="l",main="sigma")
截取部分 (paramsA) 有一个错误。其他一切都很好。我已经实施了 Alexey 在他的评论中提出的建议。解决方法如下:
pow <- function(x,y)
{
return(x^y)
}
#### posterior distribution
posteriorDistribution <- function(x, y, a, b,s2,N)
{
sumSqError <- 0.0
for(i in 1:N)
{
sumSqError <- sumSqError + pow(y[i] - (a + b*x[i]),2)
}
return((-((N/2)+1) * log(s2)) + ((-0.5/s2) * sumSqError))
}
# x <- x values
# y <- actual datapoints
# N <- sample size
# m <- length of chain
# sigmaProposalWidth <- width of uniform proposal dist for sigma squared
# paramAProposalWidth <- width of uniform proposal dist for intercept
# paramBProposalWidth <- width of uniform proposal dist for slope
mcmcSampling <- function(x,y,N,m,sigmaProposalWidth,paramAProposalWidth,paramBProposalWidth)
{
desiredAcc <- 0.44
paramsA <- vector("numeric",length=m) # intercept
paramsB <- vector("numeric",length=m) # slope
s2 <- vector("numeric",length=m) # sigma squared
paramsA[1] <- 0
paramsB[1] <- 0
s2[1] <- 1
accATot <- 0
accBTot <- 0
accS2Tot <- 0
for(i in 2:m)
{
paramsA[i] <- paramsA[i-1] + runif(1,-paramAProposalWidth,paramAProposalWidth)
accA <- 1
if((posteriorDistribution(x,y,paramsA[i],paramsB[i-1],s2[i-1],N) -
posteriorDistribution(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N)) < log(runif(1)))
{
paramsA[i] <- paramsA[i-1]
accA <- 0
}
accATot <- accATot + accA
paramsB[i] <- paramsB[i-1] + runif(1,-paramBProposalWidth,paramBProposalWidth)
accB <- 1
if((posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i-1],N) -
posteriorDistribution(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N)) < log(runif(1)))
{
paramsB[i] <- paramsB[i-1]
accB <- 0
}
accBTot <- accBTot + accB
s2[i] <- s2[i-1] + runif(1,-sigmaProposalWidth,sigmaProposalWidth)
accS2 <- 1
if((s2[i] < 0) || (posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i],N) -
posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i-1],N)) < log(runif(1)))
{
s2[i] <- s2[i-1]
accS2 <- 0
}
accS2Tot <- accS2Tot + accS2
if(i%%100==0)
{
paramAProposalWidth <- paramAProposalWidth * ((accATot/100)/desiredAcc)
paramBProposalWidth <- paramBProposalWidth * ((accBTot/100)/desiredAcc)
sigmaProposalWidth <- sigmaProposalWidth * ((accS2Tot/100)/desiredAcc)
accATot <- 0
accBTot <- 0
accS2Tot <- 0
}
}
res <- data.frame(paramsA,paramsB,s2)
return(res)
}