教程中发现 TensorFlow 错误
TensorFlow Error found in Tutorial
我还敢问吗?在这一点上,这是一项新技术,我找不到解决这个看似简单的错误的方法。我要查看的教程可以在这里找到- http://www.tensorflow.org/tutorials/mnist/pros/index.html#deep-mnist-for-experts
我将所有代码复制并粘贴到 IPython Notebook 中,但在最后一段代码中出现错误。
# To train and evaluate it we will use code that is nearly identical to that for the simple one layer SoftMax network above.
# The differences are that: we will replace the steepest gradient descent optimizer with the more sophisticated ADAM optimizer.
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
在 运行 这段代码之后,我收到了这个错误。
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-46-a5d1ab5c0ca8> in <module>()
15
16 print "test accuracy %g"%accuracy.eval(feed_dict={
---> 17 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
/root/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in eval(self, feed_dict, session)
403
404 """
--> 405 return _eval_using_default_session(self, feed_dict, self.graph, session)
406
407
/root/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in _eval_using_default_session(tensors, feed_dict, graph, session)
2712 session = get_default_session()
2713 if session is None:
-> 2714 raise ValueError("Cannot evaluate tensor using eval(): No default "
2715 "session is registered. Use 'with "
2716 "DefaultSession(sess)' or pass an explicit session to "
ValueError: Cannot evaluate tensor using eval(): No default session is registered. Use 'with DefaultSession(sess)' or pass an explicit session to eval(session=sess)
我以为我可能需要通过 conda install 安装或重新安装 TensorFlow https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl 但 conda 甚至不知道如何安装它。
有人知道如何解决此错误吗?
我明白了。正如您在值错误中看到的那样,它显示 No default session is registered. Use 'with DefaultSession(sess)' or pass an explicit session to eval(session=sess)
所以我想出的答案是将显式会话传递给 eval,就像它说的那样。这是我进行更改的地方。
if i%100 == 0:
train_accuracy = accuracy.eval(session=sess, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
和
train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
现在代码运行正常。
我在尝试一个简单的 tensorflow 示例时遇到了类似的错误。
import tensorflow as tf
v = tf.Variable(10, name="v")
sess = tf.Session()
sess.run(v.initializer)
print(v.eval())
我的解决方案是使用 sess.as_default()。例如,我将代码更改为以下并且有效:
import tensorflow as tf
v = tf.Variable(10, name="v")
with tf.Session().as_default() as sess:
sess.run(v.initializer)
print(v.eval())
另一个解决方案是使用 InteractiveSession。 InteractiveSession 和 Session 之间的区别在于 InteractiveSession 使自己成为默认会话,因此您可以 运行() 或 eval() 而无需显式调用会话。
v = tf.Variable(10, name="v")
sess = tf.InteractiveSession()
sess.run(v.initializer)
print(v.eval())
我还敢问吗?在这一点上,这是一项新技术,我找不到解决这个看似简单的错误的方法。我要查看的教程可以在这里找到- http://www.tensorflow.org/tutorials/mnist/pros/index.html#deep-mnist-for-experts
我将所有代码复制并粘贴到 IPython Notebook 中,但在最后一段代码中出现错误。
# To train and evaluate it we will use code that is nearly identical to that for the simple one layer SoftMax network above.
# The differences are that: we will replace the steepest gradient descent optimizer with the more sophisticated ADAM optimizer.
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
在 运行 这段代码之后,我收到了这个错误。
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-46-a5d1ab5c0ca8> in <module>()
15
16 print "test accuracy %g"%accuracy.eval(feed_dict={
---> 17 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
/root/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in eval(self, feed_dict, session)
403
404 """
--> 405 return _eval_using_default_session(self, feed_dict, self.graph, session)
406
407
/root/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in _eval_using_default_session(tensors, feed_dict, graph, session)
2712 session = get_default_session()
2713 if session is None:
-> 2714 raise ValueError("Cannot evaluate tensor using eval(): No default "
2715 "session is registered. Use 'with "
2716 "DefaultSession(sess)' or pass an explicit session to "
ValueError: Cannot evaluate tensor using eval(): No default session is registered. Use 'with DefaultSession(sess)' or pass an explicit session to eval(session=sess)
我以为我可能需要通过 conda install 安装或重新安装 TensorFlow https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl 但 conda 甚至不知道如何安装它。
有人知道如何解决此错误吗?
我明白了。正如您在值错误中看到的那样,它显示 No default session is registered. Use 'with DefaultSession(sess)' or pass an explicit session to eval(session=sess)
所以我想出的答案是将显式会话传递给 eval,就像它说的那样。这是我进行更改的地方。
if i%100 == 0:
train_accuracy = accuracy.eval(session=sess, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
和
train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
现在代码运行正常。
我在尝试一个简单的 tensorflow 示例时遇到了类似的错误。
import tensorflow as tf
v = tf.Variable(10, name="v")
sess = tf.Session()
sess.run(v.initializer)
print(v.eval())
我的解决方案是使用 sess.as_default()。例如,我将代码更改为以下并且有效:
import tensorflow as tf
v = tf.Variable(10, name="v")
with tf.Session().as_default() as sess:
sess.run(v.initializer)
print(v.eval())
另一个解决方案是使用 InteractiveSession。 InteractiveSession 和 Session 之间的区别在于 InteractiveSession 使自己成为默认会话,因此您可以 运行() 或 eval() 而无需显式调用会话。
v = tf.Variable(10, name="v")
sess = tf.InteractiveSession()
sess.run(v.initializer)
print(v.eval())