将精灵从灰度着色为彩色

Colorize sprites from grayscale to color

我有很多相同的图形但颜色不同。我想通过从灰度图像着色来优化它。另外,我想在游戏过程中为一个活的精灵对象动态地改变它的颜色。也逐渐将颜色值从一种颜色类型更改为另一种颜色类型。

我可以创建灰度图像并寻找这样做的可能性:

-> colorized to:

-> colorized to:

要对灰度精灵进行色调处理,可以通过一个简单的片段着色器来完成,它将纹理纹素的颜色与色调颜色相乘。 这导致恒定颜色的亮度因灰度纹理而变化。
以下所有着色器都考虑 Premultiplied Alpha.

顶点着色器shader/tone.vert

attribute vec4 a_position;
attribute vec2 a_texCoord;

varying vec2 cc_FragTexCoord1;

void main()
{
    gl_Position      = CC_PMatrix * a_position;
    cc_FragTexCoord1 = a_texCoord;
}

片段着色器shader/tone.frag

#ifdef GL_ES
precision mediump float;
#endif

varying vec2 cc_FragTexCoord1;

uniform vec3 u_tintColor;

void main()
{
    float normTint = 0.30 * u_tintColor.r + 0.59 * u_tintColor.g + 0.11 * u_tintColor.b;
    vec4  texColor = texture2D( CC_Texture0, cc_FragTexCoord1 );
    vec3  mixColor = u_tintColor * texColor / normTint;
    gl_FragColor   = vec4( mixColor.rgb, texColor.a );
}

为着色器程序对象添加一个class成员:

cocos2d::GLProgram* mProgram;

创建着色器程序,将其添加到精灵并在初始化期间设置制服:

auto sprite = cocos2d::Sprite::create( ..... );
sprite->setPosition( ..... );

mProgram = new cocos2d::GLProgram();
mProgram->initWithFilenames("shader/tone.vert", "shader/tone.frag");
mProgram->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION);
mProgram->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORDS);
mProgram->link();
mProgram->updateUniforms(); 
mProgram->use();

GLProgramState* state = GLProgramState::getOrCreateWithGLProgram(mProgram);
sprite->setGLProgram(mProgram);
sprite->setGLProgramState(state);

cocos2d::Color3B tintColor( 255, 255, 0 ); // e.g yellow
cocos2d::Vec3 tintVal( tintColor.r/255.0f, tintColor.g/255.0f, tintColor.b/255.0f );
state->setUniformVec3("u_tintColor", tintVal);

从 sprite 创建灰度并对灰度着色

如果您首先必须从 RGB 精灵创建灰度,其次要为精灵着色,那么您必须稍微调整片段着色器。

灰度颜色通常用公式gray = 0.2126 * red + 0.7152 * green + 0.0722 * blue创建(网上有不同的亮度公式和解释:Luma (video), Seven grayscale conversion algorithms。) 根据距离,您在原始颜色和黑白颜色之间进行插值。

#ifdef GL_ES
precision mediump float;
#endif

varying vec2 cc_FragTexCoord1;

uniform vec3 u_tintColor;

void main()
{
    float normTint = 0.30 * u_tintColor.r + 0.59 * u_tintColor.g + 0.11 * u_tintColor.b;
    vec4  texColor = texture2D( CC_Texture0, cc_FragTexCoord1 );
    float gray     = 0.30 * texColor.r + 0.59 * texColor.g + 0.11 * texColor.b;
    vec3  mixColor = u_tintColor * gray / normTint;
    gl_FragColor   = vec4( mixColor.rgb, texColor.a );
}


渐变纹理映射

要进行从灰度到颜色的映射,也可以使用渐变纹理。请参阅以下片段着色器:

#ifdef GL_ES
precision mediump float;
#endif

varying vec2 cc_FragTexCoord1;

uniform sampler2D u_texGrad;

void main()
{
    vec4  texColor  = texture2D( CC_Texture0, cc_FragTexCoord1 );
    vec4  lookUpCol = texture2D( u_texGrad, vec2( texColor.r / max(texColor.a, 0.01), 0.0 ) );
    float alpha     = texColor.a * lookUpCol.a;
    gl_FragColor    = vec4( lookUpCol.rgb * alpha, alpha );
}

要使用此着色器,必须添加 2D 纹理成员:

cocos2d::Texture2D* mGradinetTexture;

纹理和制服必须这样设置:

std::string     gradPath = FileUtils::getInstance()->fullPathForFilename("grad.png");
cocos2d::Image *gradImg  = new Image();
gradImg->initWithImageFile( gradPath );
mGradinetTexture = new Texture2D();
mGradinetTexture->setAliasTexParameters();
mGradinetTexture->initWithImage( gradImg );

state->setUniformTexture("u_texGrad", mGradinetTexture);

进一步的改进是自动调整颜色的渐变

#ifdef GL_ES
precision mediump float;
#endif

varying vec2 cc_FragTexCoord1;

uniform sampler2D u_texGrad;

void main()
{
    vec4  texColor   = texture2D( CC_Texture0, cc_FragTexCoord1 );
    vec4  lookUpCol  = texture2D( u_texGrad, vec2( texColor.r / max(texColor.a, 0.01), 0.5 ) );
    float lookUpGray = 0.30 * lookUpCol.r + 0.59 * lookUpCol.g + 0.11 * lookUpCol.b;
    lookUpCol       *= texColor.r / lookUpGray;
    float alpha     = texColor.a * lookUpCol.a;
    gl_FragColor    = vec4( lookUpCol.rgb * alpha, alpha );
}

如果纹理的不透明部分和纹理的透明部分之间应该有一个硬过渡,那么设置片段颜色的着色器部分必须像这样调整:

float alpha  = step( 0.5, texColor.a ) * lookUpCol.a;
gl_FragColor = vec4( lookUpCol.rgb * alpha, alpha );


生成渐变纹理

要通过一组颜色创建渐变纹理,我建议Newton polynomial。以下算法处理任意数量的颜色,这些颜色必须分布在渐变上。 每种颜色都必须映射到一个灰度值,并且灰度值必须按升序设置。该算法必须至少设置 2 种颜色。

意思是比如有颜色c0c1c2,分别对应灰度值g0g1g2,算法必须像这样初始化:

g0 = 131
g1 = 176
g2 = 244

std::vector< cocos2d::Color3B > gradBase{ cg0,          cg1,          cg2 };
std::vector< float >            x_val{    131 / 255.0f, 176 / 255.0f, 244 / 255.0f };

std::vector< cocos2d::Color3B > gradBase{ cr0,          cr1,          cr2 };
std::vector< float >            x_val{    131 / 255.0f, 176 / 255.0f, 244 / 255.0f };

C++代码:

unsigned char ClampColor( float colF )
{
    int c = (int)(colF * 255.0f + 0.5f);
    return (unsigned char)(c < 0 ? 0 : ( c > 255 ? 255 : c ));
}


std::vector< cocos2d::Color3B > gradBase{ c0, c1, ..., cN };
std::vector< float >            x_val{    g0, g1, ..., gn };

for ( int g = 0; g < x_val.size(); ++ g ) {
    x_val[g] = x_val[g] / 255.0f;
}
x_val.push_back( 1.0f );
gradBase.push_back( Color3B( 255, 255, 255 ) );
std::vector< std::array< float, 3 > > alpha;
for ( int c = 0; c < (int)gradBase.size(); ++c )
{
  std::array< float, 3 >alphaN{ gradBase[c].r / 255.0f, gradBase[c].g / 255.0f, gradBase[c].b / 255.0f };
  for ( int i = 0; i < c; ++ i )
  {
    alphaN[0] = ( alphaN[0] - alpha[i][0] ) / (x_val[c]-x_val[i]);
    alphaN[1] = ( alphaN[1] - alpha[i][1] ) / (x_val[c]-x_val[i]);
    alphaN[2] = ( alphaN[2] - alpha[i][2] ) / (x_val[c]-x_val[i]);
  }
  alpha.push_back( alphaN );
}
std::array< unsigned char, 256 * 4 > gradPlane;
for ( int g = 0; g < 256; ++ g )
{
    float x = g / 255.0;
    std::array< float, 3 >col = alpha[0];
    if ( x < x_val[0] )
    {
      col = { col[0]*x/x_val[0] , col[1]*x/x_val[0], col[2]*x/x_val[0] };
    }
    else
    {
        for ( int c = 1; c < (int)gradBase.size(); ++c )
        {
            float w = 1.0f;
            for ( int i = 0; i < c; ++ i )
                w *= x - x_val[i];
            col = { col[0] + alpha[c][0] * w, col[1] + alpha[c][1] * w, col[2] + alpha[c][2] * w };
        }
    }
    size_t i = g * 4;
    gradPlane[i+0] = ClampColor(col[0]);
    gradPlane[i+1] = ClampColor(col[1]);
    gradPlane[i+2] = ClampColor(col[2]);
    gradPlane[i+3] = 255;
}


mGradinetTexture = new Texture2D();
cocos2d::Size contentSize;
mGradinetTexture->setAliasTexParameters();
mGradinetTexture->initWithData( gradPlane.data(), gradPlane.size() / 4, Texture2D::PixelFormat::RGBA8888, 256, 1, contentSize );

注意,在这种情况下当然必须使用没有自动调整的着色器,因为调整会使非线性渐变线性化。
这是从灰度颜色到 RGB 颜色的简单映射。映射的左侧 table(灰度值)是恒定的,而 table 的右侧(RGB 值)必须调整为纹理,必须从中重新创建灰度纹理。好处是可以映射所有的灰度值,因为生成了渐变映射纹理。
虽然映射的颜色 table 与源纹理完全匹配,但中间的颜色是插值的。

请注意,对于渐变纹理,纹理过滤器参数必须设置为 GL_NEAREST,以获得准确的结果。在 cocos2d-x 中,这可以通过 Texture2D::setAliasTexParameters.

完成

简化的插值算法

由于颜色通道被编码为一个字节 (unsigned byte),因此可以简化插值算法,而不会明显降低质量,尤其是当某些颜色超过 3 个时。
以下算法对基点之间的颜色进行线性插值。从开始到第一个点,存在从 RGB 颜色 (0, 0, 0) 到第一种颜色的线性插值。最后(超过最后一个基点)保留最后的 RGB 颜色,以避免亮白色毛刺。

unsigned char ClampColor( float colF )
{
    int c = (int)(colF * 255.0f + 0.5f);
    return (unsigned char)(c < 0 ? 0 : ( c > 255 ? 255 : c ));
}


std::vector< cocos2d::Color4B >gradBase {
    Color4B( 129, 67, 73, 255 ),
    Color4B( 144, 82, 84, 255 ),
    Color4B( 161, 97, 95, 255 ),
    Color4B( 178, 112, 105, 255 ),
    Color4B( 195, 126, 116, 255 ),
    Color4B( 211, 139, 127, 255 ),
    Color4B( 219, 162, 133, 255 ),
    Color4B( 228, 185, 141, 255 ),
    Color4B( 235, 207, 149, 255 ),
    Color4B( 245, 230, 158, 255 ),
    Color4B( 251, 255, 166, 255 )
};

std::vector< float > x_val { 86, 101, 116, 131, 146, 159, 176, 193, 209, 227, 244 };
for ( int g = 0; g < x_val.size(); ++ g ) {
    x_val[g] = x_val[g] / 255.0f;
}


std::array< unsigned char, 256 * 4 > gradPlane;
size_t x_i = 0;
for ( int g = 0; g < 256; ++ g )
{
    float x = g / 255.0;
    if ( x_i < x_val.size()-1 && x >= x_val[x_i] )
      ++ x_i;

    std::array< float, 4 > col;
    if ( x_i == 0 )
    {   
        std::array< float, 4 > col0{ gradBase[0].r / 255.0f, gradBase[0].g / 255.0f, gradBase[0].b / 255.0f, gradBase[0].a / 255.0f };
        col = { col0[0]*x/x_val[0] , col0[1]*x/x_val[0], col0[2]*x/x_val[0], col0[3]*x/x_val[0] };
    }
    else if ( x_i == x_val.size() )
    {
        col = { gradBase.back().r / 255.0f, gradBase.back().g / 255.0f, gradBase.back().b / 255.0f, gradBase.back().a / 255.0f };             
    }
    else
    {
        std::array< float, 4 > col0{ gradBase[x_i-1].r / 255.0f, gradBase[x_i-1].g / 255.0f, gradBase[x_i-1].b / 255.0f, gradBase[x_i-1].a / 255.0f };
        std::array< float, 4 > col1{ gradBase[x_i].r / 255.0f, gradBase[x_i].g / 255.0f, gradBase[x_i].b / 255.0f, gradBase[x_i].a / 255.0f };
        float a = (x - x_val[x_i-1]) / (x_val[x_i] - x_val[x_i-1]);
        col = { col0[0] + (col1[0]-col0[0])*a, col0[1] + (col1[1]-col0[1])*a, col0[2] + (col1[2]-col0[2])*a, col0[3] + (col1[3]-col0[3])*a };
    }

    size_t i = g * 4;
    gradPlane[i+0] = ClampColor(col[0]);
    gradPlane[i+1] = ClampColor(col[1]);
    gradPlane[i+2] = ClampColor(col[2]);
    gradPlane[i+3] = ClampColor(col[3]);
}