Vulkan 图像布局未在管道屏障中转换

Vulkan image layout not transitioning in pipeline barrier

我移植了大部分Introduction to Vulkan - Tutorial 02 from C++ into a single Rust function to keep it simple. The function calls Vulkan through Rust FFI provided by ash

我在使管道屏障和信号量正常运行时遇到问题。据我所知,此代码似乎创建了与 C++ 代码相同的验证调试日志信息。

当我运行启用验证层的C++代码时,vkQueueSubmit是成功的。当我 运行 下面的 Rust 函数(启用验证层)时,queue_submit 失败并且我收到

Cannot submit cmd buffer using image (0x6) [sub-resource: aspectMask 0x1 array layer 0, mip level 0], with layout VK_IMAGE_LAYOUT_UNDEFINED when first use is VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

...这对我来说意味着图像布局转换没有发生,所以我 configure/submit 我的管道障碍可能有问题。

#[macro_use]
extern crate ash;
extern crate kernel32;
extern crate winit;
use std::default::Default;
use std::ffi::{CStr, CString};
use std::ptr;
use ash::vk;
use ash::Entry;
use ash::extensions::{DebugReport, Surface, Swapchain, Win32Surface};
use ash::version::{DeviceV1_0, EntryV1_0, InstanceV1_0};
use winit::os::windows::WindowExt;

unsafe extern "system" fn vulkan_debug_callback(
    _: vk::DebugReportFlagsEXT,
    _: vk::DebugReportObjectTypeEXT,
    _: vk::uint64_t,
    _: vk::size_t,
    _: vk::int32_t,
    _: *const vk::c_char,
    p_message: *const vk::c_char,
    _: *mut vk::c_void,
) -> u32 {
    println!("{:?}", CStr::from_ptr(p_message));
    1
}

fn main() {
    let mut events_loop = winit::EventsLoop::new();
    let window_width = 1024;
    let window_height = 768;
    let window = winit::WindowBuilder::new()
        .with_title("Example")
        .with_dimensions(window_width, window_height)
        .build(&events_loop)
        .unwrap();

    unsafe {
        let entry = Entry::new().unwrap();
        let name = CString::new("Example").unwrap();
        let name_raw = name.as_ptr();

        let app_info = [
            vk::ApplicationInfo {
                s_type: vk::StructureType::ApplicationInfo,
                p_next: ptr::null(),
                p_application_name: name_raw,
                application_version: 0,
                p_engine_name: name_raw,
                engine_version: 0,
                api_version: vk_make_version!(1, 0, 36),
            },
        ];

        let layer_names = [CString::new("VK_LAYER_LUNARG_standard_validation").unwrap()];
        let layer_names_raw: Vec<*const i8> = layer_names.iter().map(|x| x.as_ptr()).collect();

        let extension_names_raw = vec![
            Surface::name().as_ptr(),
            Win32Surface::name().as_ptr(),
            DebugReport::name().as_ptr(),
        ];

        let create_info = vk::InstanceCreateInfo {
            s_type: vk::StructureType::InstanceCreateInfo,
            p_next: ptr::null(),
            flags: Default::default(),
            p_application_info: app_info.as_ptr(),
            pp_enabled_layer_names: layer_names_raw.as_ptr(),
            enabled_layer_count: layer_names_raw.len() as u32,
            pp_enabled_extension_names: extension_names_raw.as_ptr(),
            enabled_extension_count: extension_names_raw.len() as u32,
        };

        let instance = entry.create_instance(&create_info, None).unwrap();

        let debug_info = vk::DebugReportCallbackCreateInfoEXT {
            s_type: vk::StructureType::DebugReportCallbackCreateInfoExt,
            p_next: ptr::null(),
            flags: vk::DEBUG_REPORT_ERROR_BIT_EXT | vk::DEBUG_REPORT_WARNING_BIT_EXT |
                vk::DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT |
                vk::DEBUG_REPORT_INFORMATION_BIT_EXT |
                vk::DEBUG_REPORT_DEBUG_BIT_EXT,
            pfn_callback: vulkan_debug_callback,
            p_user_data: ptr::null_mut(),
        };

        let debug_report_loader = DebugReport::new(&entry, &instance).unwrap();

        let debug_callback = debug_report_loader
            .create_debug_report_callback_ext(&debug_info, None)
            .unwrap();

        let surface_loader = Surface::new(&entry, &instance).unwrap();
        let win32_create_info = vk::Win32SurfaceCreateInfoKHR {
            s_type: vk::StructureType::Win32SurfaceCreateInfoKhr,
            p_next: ptr::null(),
            flags: Default::default(),
            hinstance: kernel32::GetModuleHandleW(ptr::null()) as *mut _,
            hwnd: window.get_hwnd() as *mut _,
        };

        let surface = Win32Surface::new(&entry, &instance)
            .unwrap()
            .create_win32_surface_khr(&win32_create_info, None)
            .unwrap();

        let (physical_device, graphics_queue_family_index, present_queue_family_index) = instance
            .enumerate_physical_devices()
            .unwrap()
            .iter()
            .filter_map(|&p| {
                let candidates =
                    instance
                        .get_physical_device_queue_family_properties(p)
                        .iter()
                        .enumerate()
                        .filter_map(|(index, info)| {
                            let has_graphics = info.queue_flags.subset(vk::QUEUE_GRAPHICS_BIT);
                            let has_present = surface_loader
                                .get_physical_device_surface_support_khr(p, index as u32, surface);
                            if has_graphics || has_present {
                                Some((index as u32, has_graphics, has_present))
                            } else {
                                None
                            }
                        })
                        .collect::<Vec<(u32, bool, bool)>>();
                match candidates.iter().find(|&x| x.1 && x.2) {
                    Some(ref both) => Some((p, both.0, both.0)),
                    None => match candidates.iter().find(|&x| x.1) {
                        Some(ref graphics) => match candidates.iter().find(|&x| x.2) {
                            Some(ref present) => Some((p, graphics.0, present.0)),
                            None => None,
                        },
                        None => None,
                    },
                }
            })
            .nth(0)
            .unwrap();

        let device_extension_names_raw = [Swapchain::name().as_ptr()];
        let queue_priorities = [1.0];
        let queue_create_infos = [
            vk::DeviceQueueCreateInfo {
                s_type: vk::StructureType::DeviceQueueCreateInfo,
                p_next: ptr::null(),
                flags: Default::default(),
                queue_family_index: graphics_queue_family_index,
                p_queue_priorities: queue_priorities.as_ptr(),
                queue_count: queue_priorities.len() as u32,
            },
        ];

        let device_create_info = vk::DeviceCreateInfo {
            s_type: vk::StructureType::DeviceCreateInfo,
            p_next: ptr::null(),
            flags: Default::default(),
            queue_create_info_count: 1 as u32,
            p_queue_create_infos: queue_create_infos.as_ptr(),
            enabled_layer_count: 0,
            pp_enabled_layer_names: ptr::null(),
            enabled_extension_count: device_extension_names_raw.len() as u32,
            pp_enabled_extension_names: device_extension_names_raw.as_ptr(),
            p_enabled_features: ptr::null(),
        };
        let device = instance
            .create_device(physical_device, &device_create_info, None)
            .unwrap();

        let present_queue = device.get_device_queue(present_queue_family_index, 0);

        let image_available_semaphore_create_info = vk::SemaphoreCreateInfo {
            s_type: vk::StructureType::SemaphoreCreateInfo,
            p_next: ptr::null(),
            flags: Default::default(),
        };
        let image_available_semaphore = device
            .create_semaphore(&image_available_semaphore_create_info, None)
            .unwrap();

        let render_complete_semaphore_create_info = vk::SemaphoreCreateInfo {
            s_type: vk::StructureType::SemaphoreCreateInfo,
            p_next: ptr::null(),
            flags: Default::default(),
        };
        let render_complete_semaphore = device
            .create_semaphore(&render_complete_semaphore_create_info, None)
            .unwrap();
        let swapchain_loader = Swapchain::new(&instance, &device).unwrap();

        let pool_create_info = vk::CommandPoolCreateInfo {
            s_type: vk::StructureType::CommandPoolCreateInfo,
            p_next: ptr::null(),
            flags: vk::CommandPoolCreateFlags::empty(),
            queue_family_index: present_queue_family_index,
        };

        device.device_wait_idle().unwrap();
        let surface_capabilities = surface_loader
            .get_physical_device_surface_capabilities_khr(physical_device, surface)
            .unwrap();

        let surface_formats = surface_loader
            .get_physical_device_surface_formats_khr(physical_device, surface)
            .unwrap();

        let surface_format =
            if surface_formats.len() == 1 && surface_formats[0].format == vk::Format::Undefined {
                vk::SurfaceFormatKHR {
                    format: vk::Format::B8g8r8Unorm,
                    color_space: surface_formats[0].color_space,
                }
            } else {
                match (surface_formats)
                    .iter()
                    .find(|&sf| sf.format == vk::Format::B8g8r8Unorm)
                {
                    Some(sf) => sf.clone(),
                    None => surface_formats[0].clone(),
                }
            };

        let image_extent = match surface_capabilities.current_extent.width {
            std::u32::MAX => vk::Extent2D {
                width: window_width,
                height: window_height,
            },
            _ => surface_capabilities.current_extent.clone(),
        };

        let mut image_count = surface_capabilities.min_image_count + 1;
        if surface_capabilities.max_image_count > 0 &&
            image_count > surface_capabilities.max_image_count
        {
            image_count = surface_capabilities.max_image_count;
        }

        image_count = image_count;

        let pre_transform = if surface_capabilities
            .supported_transforms
            .subset(vk::SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
        {
            vk::SURFACE_TRANSFORM_IDENTITY_BIT_KHR
        } else {
            surface_capabilities.current_transform
        };

        let present_modes = surface_loader
            .get_physical_device_surface_present_modes_khr(physical_device, surface)
            .unwrap();

        let present_mode = present_modes
            .iter()
            .cloned()
            .find(|&mode| mode == vk::PresentModeKHR::Fifo)
            .unwrap_or(vk::PresentModeKHR::Fifo);

        let swapchain_create_info = vk::SwapchainCreateInfoKHR {
            s_type: vk::StructureType::SwapchainCreateInfoKhr,
            p_next: ptr::null(),
            flags: Default::default(),
            surface: surface,
            min_image_count: image_count,
            image_color_space: surface_format.color_space,
            image_format: surface_format.format,
            image_extent: image_extent,
            image_usage: vk::IMAGE_USAGE_COLOR_ATTACHMENT_BIT | vk::IMAGE_USAGE_TRANSFER_DST_BIT,
            image_sharing_mode: vk::SharingMode::Exclusive,
            pre_transform,
            composite_alpha: vk::COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
            present_mode,
            clipped: 1,
            old_swapchain: vk::SwapchainKHR::null(),
            image_array_layers: 1,
            p_queue_family_indices: ptr::null(),
            queue_family_index_count: 0,
        };

        let swapchain = swapchain_loader
            .create_swapchain_khr(&swapchain_create_info, None)
            .unwrap();

        let command_pool = device.create_command_pool(&pool_create_info, None).unwrap();

        let command_buffer_allocate_info = vk::CommandBufferAllocateInfo {
            s_type: vk::StructureType::CommandBufferAllocateInfo,
            p_next: ptr::null(),
            command_buffer_count: image_count,
            command_pool: command_pool,
            level: vk::CommandBufferLevel::Primary,
        };

        let command_buffers = device
            .allocate_command_buffers(&command_buffer_allocate_info)
            .unwrap();

        let swapchain_images = swapchain_loader
            .get_swapchain_images_khr(swapchain)
            .unwrap();

        let command_buffer_begin_info = vk::CommandBufferBeginInfo {
            s_type: vk::StructureType::CommandBufferBeginInfo,
            p_next: ptr::null(),
            p_inheritance_info: ptr::null(),
            flags: vk::COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
        };

        let subresource_range = vk::ImageSubresourceRange {
            aspect_mask: vk::IMAGE_ASPECT_COLOR_BIT,
            base_mip_level: 0,
            level_count: 1,
            base_array_layer: 0,
            layer_count: 1,
        };

        for (index, swapchain_image) in swapchain_images.iter().enumerate() {
            let barrier_from_present_to_clear = vk::ImageMemoryBarrier {
                s_type: vk::StructureType::ImageMemoryBarrier,
                p_next: ptr::null(),
                src_access_mask: vk::ACCESS_MEMORY_READ_BIT,
                dst_access_mask: vk::ACCESS_TRANSFER_WRITE_BIT,
                old_layout: vk::ImageLayout::Undefined,
                new_layout: vk::ImageLayout::TransferDstOptimal,
                src_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
                dst_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
                image: *swapchain_image,
                subresource_range: subresource_range.clone(),
            };

            let barrier_from_clear_to_present = vk::ImageMemoryBarrier {
                s_type: vk::StructureType::ImageMemoryBarrier,
                p_next: ptr::null(),
                src_access_mask: vk::ACCESS_TRANSFER_WRITE_BIT,
                dst_access_mask: vk::ACCESS_MEMORY_READ_BIT,
                old_layout: vk::ImageLayout::TransferDstOptimal,
                new_layout: vk::ImageLayout::PresentSrcKhr,
                src_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
                dst_queue_family_index: vk::VK_QUEUE_FAMILY_IGNORED,
                image: *swapchain_image,
                subresource_range: subresource_range.clone(),
            };

            let command_buffer = command_buffers[index];

            device
                .begin_command_buffer(command_buffer, &command_buffer_begin_info)
                .unwrap();

            device.cmd_pipeline_barrier(
                command_buffer,
                vk::PIPELINE_STAGE_TRANSFER_BIT,
                vk::PIPELINE_STAGE_TRANSFER_BIT,
                vk::DependencyFlags::empty(),
                &[],
                &[],
                &[barrier_from_present_to_clear],
            );

            let clear_color = vk::ClearColorValue::new_float32([1.0, index as f32 / 4.0, 0.2, 0.0]);

            device.cmd_clear_color_image(
                command_buffer,
                *swapchain_image,
                vk::ImageLayout::TransferDstOptimal,
                &clear_color,
                &[subresource_range.clone()],
            );

            device.cmd_pipeline_barrier(
                command_buffer,
                vk::PIPELINE_STAGE_TRANSFER_BIT,
                vk::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
                vk::DependencyFlags::empty(),
                &[],
                &[],
                &[barrier_from_clear_to_present],
            );

            device.end_command_buffer(command_buffer).unwrap();
        }

        events_loop.run_forever(|event| match event {
            winit::Event::WindowEvent {
                event: winit::WindowEvent::Closed,
                ..
            } => {
                device.device_wait_idle().unwrap();
                device.destroy_semaphore(image_available_semaphore, None);
                device.destroy_semaphore(render_complete_semaphore, None);

                device.destroy_command_pool(command_pool, None);
                swapchain_loader.destroy_swapchain_khr(swapchain, None);
                device.destroy_device(None);
                surface_loader.destroy_surface_khr(surface, None);
                debug_report_loader.destroy_debug_report_callback_ext(debug_callback, None);
                instance.destroy_instance(None);
                winit::ControlFlow::Break
            }
            _ => {
                let image_index = swapchain_loader
                    .acquire_next_image_khr(
                        swapchain,
                        std::u64::MAX,
                        image_available_semaphore,
                        vk::Fence::null(),
                    )
                    .unwrap();

                let present_semaphores = [image_available_semaphore];
                let render_semaphores = [render_complete_semaphore];
                let command_buffer = [command_buffers[image_index as usize]];

                let submit_info = [
                    vk::SubmitInfo {
                        s_type: vk::StructureType::SubmitInfo,
                        p_next: ptr::null(),
                        wait_semaphore_count: present_semaphores.len() as u32,
                        p_wait_semaphores: present_semaphores.as_ptr(),
                        p_wait_dst_stage_mask: &vk::PIPELINE_STAGE_TRANSFER_BIT,
                        command_buffer_count: command_buffer.len() as u32,
                        p_command_buffers: command_buffer.as_ptr(),
                        signal_semaphore_count: render_semaphores.len() as u32,
                        p_signal_semaphores: render_semaphores.as_ptr(),
                    },
                ];

                device
                    .queue_submit(present_queue, &submit_info, vk::Fence::null())
                    .unwrap();

                let present_info = vk::PresentInfoKHR {
                    s_type: vk::StructureType::PresentInfoKhr,
                    p_next: ptr::null(),
                    wait_semaphore_count: render_semaphores.len() as u32,
                    p_wait_semaphores: render_semaphores.as_ptr(),
                    swapchain_count: 1,
                    p_swapchains: &swapchain,
                    p_image_indices: &image_index,
                    p_results: ptr::null_mut(),
                };

                swapchain_loader
                    .queue_present_khr(present_queue, &present_info)
                    .unwrap();

                winit::ControlFlow::Continue
            }
        });
    }
}

可能有些值被过早释放,或者我传递的指针不正确,但我看不到哪里(我对 Rust 比较陌生)。

抱歉代码太长了,我不确定如何进一步简化这个例子。有趣的部分在我提交管道障碍和信号量的底部。我用的Vulkan SDK是1.0.57.0,ash是0.18.4,winit是0.7,kernel32-sys是0.2.2.

如果有任何关于调试它的建议,我将不胜感激。我尝试(并将继续尝试)进入验证层以检查各个 API 调用并并排比较,但引入差异的位置并不明显。

VK_ERROR_VALIDATION_FAILED_EXT 通常 return 在您从调试回调 return VK_TRUE 的情况下编辑。 The specification 建议不要这样做:

The callback returns a VkBool32 that indicates to the calling layer the application’s desire to abort the call. A value of VK_TRUE indicates that the application wants to abort this call. If the application returns VK_FALSE, the command must not be aborted. Applications should always return VK_FALSE so that they see the same behavior with and without validation layers enabled.

VK_TRUE 仅用于层开发目的。它目前的用途是对层进行单元测试,这需要命令在到达 GPU 驱动程序之前中止(以防止测试不感兴趣的崩溃)。在应用程序中使用它是常见的错误。正如引用所说,应用程序应该始终使用 VK_FALSE.

在你的情况下,层的行为有点奇怪,但可能发生的是:

  1. 您的应用和教程都会在 vkCmdPipelineBarrier 上产生良性警告。
  2. 因为你 return VK_TRUE 障碍被中止并且不计算在内。
  3. vkCmdPipelineBarrier returns void(即不能 return VK_ERROR_VALIDATION_FAILED_EXT)所以你从来不知道它实际上被中止了。
  4. 由于布局转换已中止,您在 vkQueueSubmit 上的图像布局错误,因此您会收到相应的错误。