手动泊松回归

Poisson Regression by hand

我想手动进行泊松回归并定义一个可用于估计任意数量系数的函数。我有 2 个问题:

首先:我怎样才能得到一个 beta 矩阵,而不必明确地写出每个 beta。我想以这种方式编写 lambda = exp(t(x)%*%beta) 。我以为我可以做一个 for 循环并为 x 中的每一列创建一个 beta,然后将它们求和到一个矩阵中,但我不知道如何编码。

第二个: 因为我不知道如何为 i beta 编写代码,所以我尝试编写用于估计 6 beta 的函数。我得到了数据集 warpbreaks 的结果,但系数与 glm 中的不同,为什么?我也不知道我必须将哪些值粘贴到 par,也不知道如果我不将 x 和 y 粘贴到函数,为什么 optim 不起作用。

希望能帮到你!

    daten <- warpbreaks

LogLike <- function(y,x, par) {
  beta <- par
  # the deterministic part of the model:
  lambda <- exp(beta%*%t(x))
  # and here comes the negative log-likelihood of the whole dataset, given     the
  # model:
  LL <- -sum(dpois(y, lambda, log = TRUE))
  return(LL)
}


PoisMod<-function(formula, data){

  # #formula
  form <- formula(formula)
  # 
  # # dataFrame 
  model <- model.frame(formula, data = data)
  # 
  # # Designmatrix 
  x <- model.matrix(formula,data = data)
  # 
  # # Response Variable
  y <- model.response(model)

  par <- rep(0,ncol(x))

  call <- match.call()

  koef <- optim(par=par,fn=LogLike,x=x,y=y)$par

 estimation <- return(list("coefficients" = koef,"call"= call))

  class(result) <- "PoisMod"
}


print.PoisMod <- function(x, ...) {  

  # Call 
  cat("Call:", "\n")

  # 
  print(x$call)

  # 
  cat("\n")

  # Coefficients  
  cat("Coefficents:", "\n")

  # 
  Koef <- (t(x$coefficients))

  # 
  rownames(Koef) <- ""

  # 
  print(round(Koef, 3))
}

这是一个工作示例,基于您的代码..但没有解释变量的平方:

LogLike <- function(y,x, par) {
  beta0 <- par[1]
  beta1 <- par[2]
  beta2 <- par[3]
  beta3 <- par[4]
  # the deterministic part of the model:
  lambda <- exp(beta0*x[,1] + beta1 * x[,2] +beta2*x[,3]+beta3*x[,4])
  # and here comes the negative log-likelihood of the whole dataset, given     the
  # model:
  LL <- -sum(dpois(y, lambda, log = TRUE))
  return(LL)
}


PoisMod<-function(formula, data){

  # # definiere Regressionsformel
  form <- formula(formula)
  # 
  # # dataFrame wird erzeugt 
   model <- model.frame(formula, data = data)
  # 
  # # Designmatrix erzeugt
  x <- model.matrix(formula,data = data)
  # 
  # # Response Variable erzeugt
   y <- model.response(model)

  par <- c(0,0,0,0)
  erg <- list(optim(par=par,fn=LogLike,x=x,y=y)$par)
  return(erg)
}

PoisMod(breaks~wool+tension, as.data.frame(daten))

你可以与 glm 进行比较:

glm(breaks~wool+tension, family = "poisson", data = as.data.frame(daten))

编辑:对于任意数量的解释变量

LogLike <- function(y,x, par) {
  beta <- par
  # the deterministic part of the model:
  lambda <- exp(beta%*%t(x))
  # and here comes the negative log-likelihood of the whole dataset, given     the
  # model:
  LL <- -sum(dpois(y, lambda, log = TRUE))
  return(LL)
}


PoisMod<-function(formula, data){

  # # definiere Regressionsformel
  form <- formula(formula)
  # 
  # # dataFrame wird erzeugt 
   model <- model.frame(formula, data = data)
  # 
  # # Designmatrix erzeugt
  x <- model.matrix(formula,data = data)
  # 
  # # Response Variable erzeugt
   y <- model.response(model)

  par <- rep(0,ncol(x))
  erg <- list(optim(par=par,fn=LogLike,x=x,y=y)$par)
  return(erg)
}

PoisMod(breaks~wool+tension, as.data.frame(daten))
glm(breaks~wool+tension, family = "poisson", data = as.data.frame(daten))