给定估计参数的对数似然计算
Log-likelihood calculation given estimated parameters
一般来说:我想根据数据 O 的估计模型参数计算数据 N 的(对数)似然。
更具体地说,我想知道下面的 ll_given_modPars
函数是否存在于处理数据建模(lme4
、glmm
等)的多个 R 包之一中在此抽象示例中显示(不是 运行):
library(lme4)
o_model <- lmer(observed ~ fixed.id + (1|random.id), data = O, REML = F)
n_logLik <- ll_given_modPars(model.estimates = o_model, data = N)
为简单起见,上面的虚构示例是在线性混合模型上进行的,但我最终想在处理泊松族或直接负二项式的广义线性混合模型中执行此操作(lme4
: glmer(..., family="poisson")
或 glmer.nb
).
据我所知,大多数软件包都处理参数估计(很好,我需要那个),然后使用 anova
或某种程度的东西比较相同数据的模型与固定和随机效应的不同组合这不是我想做的。
我想要相同参数在不同数据上的对数似然。
主要尝试:
在没有找到似乎正在执行的函数后,我想到 'simply' 根据我的目的调整 lme4
代码:它计算给定参数的对数似然数据,所以我想我可以使用相同的框架,但不让它优化不同的参数,而是隔离似然计算函数,只给它参数和数据。不幸的是,代码有点超出我目前的技能 https://github.com/lme4/lme4/blob/master/R/nbinom.R(我有点迷失了他们如何使用他们优化的对象)。
我想自己做似然计算,从线性混合模型开始,然后逐步增加到更多相关模型。但是已经有了这个 example 我很难理解数学,即使使用指定的公式,获得的对数似然仍然不同(我不知道为什么,请参见附录中的代码)并且我担心我会花太长时间才能为更复杂的模型(例如泊松或负二项式)做这件事
在这一点上,我不确定最好的途径是什么,如果您有任何意见,我将不胜感激。
附录:尝试根据 How does lmer (from the R package lme4) compute log likelihood? 计算对数似然(或寻找封闭形式近似)。 lmer
(来自 lme4
)给出 -17.8 的对数似然,我得到 -45.56
library(lme4)
set.seed(7)
n <- 2 # number of groups
m <- 4 # number of instances per group
fixed.effect <- c(0, -2, -1, 1)
tau <- 5 # standard deviation of random effects
sigma <- 2 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau)
sim.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
sim.data$EXPECT.Y <- sim.data$GROUP.EFFECT + sim.data$INSTANCE.EFFECT
# now observe Y value, assuming normally distributed with fixed std. deviation
sim.data$OBS.Y <- rnorm(nrow(sim.data), mean=sim.data$EXPECT.Y, sigma)
model <- lmer(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = sim.data, REML=F)
summary(model)
toy.model.var <- VarCorr(model)
toy.model.sigma <- attr(toy.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
toy.model.tau.squared <- toy.model.var[[1]][1] # corresponds to variance of random effects
toy.model.betas <- model@beta
# left product, spread within gropus
toy.data <- rbind(sim.data$OBS.Y[1:4], sim.data$OBS.Y[5:8])
toy.mean.adj <- rbind(toy.data[1,] - mean(unlist(toy.data[1,])), toy.data[2,] - mean(unlist(toy.data[2,])))
toy.mean.adj.prod1 <- prod(dnorm(unlist(toy.mean.adj[1,]), mean = 0, sd = toy.model.sigma))
toy.mean.adj.prod2 <- prod(dnorm(unlist(toy.mean.adj[2,]), mean = 0, sd = toy.model.sigma))
toy.mean.adj.final.prod <- toy.mean.adj.prod1 * toy.mean.adj.prod2
# right product, spread between gropus
toy.mean.beta.adj <- rbind(mean(unlist(toy.data[1,])) - toy.model.betas, mean(unlist(toy.data[2,])) - toy.model.betas)
toy.mean.beta.adj[1,] <- toy.mean.beta.adj[1,] - c(0, toy.model.betas[1], toy.model.betas[1], toy.model.betas[1])
toy.mean.beta.adj[2,] <- toy.mean.beta.adj[2,] - c(0, toy.model.betas[1], toy.model.betas[1], toy.model.betas[1])
toy.mean.beta.adj.prod1 <- prod(dnorm(unlist(toy.mean.beta.adj[1,]), mean = 0, sd = sqrt(toy.model.sigma^2/4 + toy.model.tau.squared)) * sqrt(2/4*pi*toy.model.sigma^2))
toy.mean.beta.adj.prod2 <- prod(dnorm(unlist(toy.mean.beta.adj[2,]), mean = 0, sd = sqrt(toy.model.sigma^2/4 + toy.model.tau.squared)) * sqrt(2/4*pi*toy.model.sigma^2))
toy.mean.beta.adj.final.prod <- toy.mean.beta.adj.prod1 * toy.mean.beta.adj.prod2
toy.total.prod <- toy.mean.adj.final.prod * toy.mean.beta.adj.final.prod
log(toy.total.prod)
编辑:评论中提供了有用的 link (https://stats.stackexchange.com/questions/271903/understand-marginal-likelihood-of-mixed-effects-models)。从上面转换我的例子我可以复制对数似然
library(mvtnorm)
z = getME(model, "Z")
zt = getME(model, "Zt")
psi = bdiag(replicate(2, toy.model.tau.squared, simplify=FALSE))
betw = z%*%psi%*%zt
err = Diagonal(8, sigma(model)^2)
v = betw + err
dmvnorm(sim.data$OBS.Y, predict(model, re.form=NA), as.matrix(v), log=TRUE)
虽然我没有设法为所有这些问题提出一个封闭形式的解决方案,但我确实设法使用数值积分重现了对数似然。我在下面发布了一些小示例,说明它如何在 LMM 设置(假设正态残差随机效应)以及具有泊松和负二项式的 GLMM 中工作。请注意,当您增加样本量时,尤其是后者往往会略有不同。我的猜测是某处发生了一些舍入,但就我的目的而言,此处实现的精度已经足够好了。我现在会接受我自己的回答,但如果有人发布泊松或负二项式的封闭形式,我会很乐意接受你的回答:)
library(lme4)
library(mvtnorm)
################################################################################
# LMM numerical integration
set.seed(7)
n <- 2 # number of groups
m <- 4 # number of instances per group
fixed.effect <- c(0, -2, -1, 1)
tau <- 5 # standard deviation of random effects
sigma <- 2 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau)
normal.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
normal.data$EXPECT.Y <- normal.data$GROUP.EFFECT + normal.data$INSTANCE.EFFECT
# now observe Y value, assuming normally distributed with fixed std. deviation
normal.data$OBS.Y <- rnorm(nrow(normal.data), mean=normal.data$EXPECT.Y, sigma)
normal.model <- lmer(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = normal.data, REML=F)
summary(normal.model)
normal.model.var <- VarCorr(normal.model)
normal.model.sigma <- attr(normal.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
normal.model.tau.squared <- normal.model.var[[1]][1] # corresponds to variance of random effects
normal.model.betas <- normal.model@beta
normal.group.tau <- sqrt(normal.model.tau.squared)
normal.group.sigma <- sigma(normal.model)
normal.group.beta <- predict(normal.model, re.form=NA)[1:4]
integrate_group1 <- function(x){
p1 <- dnorm(normal.data$OBS.Y[1] - normal.group.beta[1] - x, mean = 0, sd = normal.group.sigma) * dnorm(x, mean = 0, sd = normal.group.tau)
p2 <- dnorm(normal.data$OBS.Y[2] - normal.group.beta[2] - x, mean = 0, sd = normal.group.sigma)
p3 <- dnorm(normal.data$OBS.Y[3] - normal.group.beta[3] - x, mean = 0, sd = normal.group.sigma)
p4 <- dnorm(normal.data$OBS.Y[4] - normal.group.beta[4] - x, mean = 0, sd = normal.group.sigma)
p_out <- p1 * p2 * p3 * p4
p_out
}
normal.group1.integration <- integrate(integrate_group1, lower = -10*normal.group.tau, upper = 10*normal.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
integrate_group2 <- function(x){
p1 <- dnorm(normal.data$OBS.Y[5] - normal.group.beta[1] - x, mean = 0, sd = normal.group.sigma) * dnorm(x, mean = 0, sd = normal.group.tau)
p2 <- dnorm(normal.data$OBS.Y[6] - normal.group.beta[2] - x, mean = 0, sd = normal.group.sigma)
p3 <- dnorm(normal.data$OBS.Y[7] - normal.group.beta[3] - x, mean = 0, sd = normal.group.sigma)
p4 <- dnorm(normal.data$OBS.Y[8] - normal.group.beta[4] - x, mean = 0, sd = normal.group.sigma)
p_out <- p1 * p2 * p3 * p4
p_out
}
normal.group2.integration <- integrate(integrate_group2, lower = -10*normal.group.tau, upper = 10*normal.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
log(normal.group1.integration) + log(normal.group2.integration)
#################################
# Poisson numerical integration
set.seed(13) #13
n <- 2 # number of groups
m <- 4 # number of instances per group
# effect sizes are much smaller since they are exponentiated
fixed.effect <- c(0, -0.2, -0.1, 0.2)
tau <- 1.5 # standard deviation of random effects
# sigma <- 1.5 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau) # guide effect
poisson.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
poisson.data$EXPECT.Y <- exp(poisson.data$GROUP.EFFECT + poisson.data$INSTANCE.EFFECT)
# now observe Y value, assuming normally distributed with fixed std. deviation
poisson.data$OBS.Y <- rpois(nrow(poisson.data), poisson.data$EXPECT.Y)
poisson.model <- glmer(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = poisson.data, family="poisson")
summary(poisson.model)
poisson.model.var <- VarCorr(poisson.model)
poisson.model.sigma <- attr(poisson.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
poisson.model.tau.squared <- poisson.model.var[[1]][1] # corresponds to variance of random effects
poisson.model.betas <- poisson.model@beta
poisson.group.tau <- sqrt(poisson.model.tau.squared)
poisson.group.sigma <- sigma(poisson.model)
poisson.group.beta <- predict(poisson.model, re.form=NA)[1:4]
integrate_group1 <- function(x){
p1 <- dpois(poisson.data$OBS.Y[1], lambda = exp(poisson.group.beta[1] + x)) * dnorm(x, mean = 0, sd = poisson.group.tau)
p2 <- dpois(poisson.data$OBS.Y[2], lambda = exp(poisson.group.beta[2] + x))
p3 <- dpois(poisson.data$OBS.Y[3], lambda = exp(poisson.group.beta[3] + x))
p4 <- dpois(poisson.data$OBS.Y[4], lambda = exp(poisson.group.beta[4] + x))
p_out <- p1 * p2 * p3 * p4
p_out
}
poisson.group1.integration <- integrate(integrate_group1, lower = -10*poisson.group.tau, upper = 10*poisson.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
integrate_group2 <- function(x){
p1 <- dpois(poisson.data$OBS.Y[5], lambda = exp(poisson.group.beta[1] + x)) * dnorm(x, mean = 0, sd = poisson.group.tau)
p2 <- dpois(poisson.data$OBS.Y[6], lambda = exp(poisson.group.beta[2] + x))
p3 <- dpois(poisson.data$OBS.Y[7], lambda = exp(poisson.group.beta[3] + x))
p4 <- dpois(poisson.data$OBS.Y[8], lambda = exp(poisson.group.beta[4] + x))
p_out <- p1 * p2 * p3 * p4
p_out
}
poisson.group2.integration <- integrate(integrate_group2, lower = -10*poisson.group.tau, upper = 10*poisson.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
log(poisson.group1.integration) + log(poisson.group2.integration)
#############
# Negative-Binomial numerical integration
set.seed(13) #13
n <- 100 # number of groups
m <- 4 # number of instances per group
# effect sizes are much smaller since they are exponentiated
fixed.effect <- c(0, -0.2, -0.1, 0.2)
tau <- 1.5 # standard deviation of random effects
theta <- 0.5
# sigma <- 1.5 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau) # guide effect
nb.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
nb.data$EXPECT.Y <- exp(nb.data$GROUP.EFFECT + nb.data$INSTANCE.EFFECT)
# now observe Y value, assuming normally distributed with fixed std. deviation
nb.data$OBS.Y <- rnbinom(nrow(nb.data), mu = nb.data$EXPECT.Y, size = theta)
nb.model <- glmer.nb(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = nb.data)
summary(nb.model)
nb.model.var <- VarCorr(nb.model)
nb.model.sigma <- attr(nb.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
nb.model.tau.squared <- nb.model.var[[1]][1] # corresponds to variance of random effects
nb.model.betas <- nb.model@beta
nb.group.tau <- sqrt(nb.model.tau.squared)
nb.group.beta <- predict(nb.model, re.form=NA)[1:4]
nb.group.dispersion <- getME(nb.model, "glmer.nb.theta")
integration_function_generator <- function(input.obs, input.beta, input.dispersion, input.tau){
function(x){
p1 <- dnbinom(input.obs[1], mu = exp(input.beta[1] + x), size = input.dispersion) * dnorm(x, mean = 0, sd = input.tau)
p2 <- dnbinom(input.obs[2], mu = exp(input.beta[2] + x), size = input.dispersion)
p3 <- dnbinom(input.obs[3], mu = exp(input.beta[3] + x), size = input.dispersion)
p4 <- dnbinom(input.obs[4], mu = exp(input.beta[4] + x), size = input.dispersion)
p_out <- p1 * p2 * p3 * p4
p_out
}
}
nb.all.group.integrations <- c()
for(i in 1:n){
temp.obs <- nb.data$OBS.Y[(1:4)+(i-1)*4]
temp_integrate_function <- integration_function_generator(temp.obs, nb.group.beta, nb.group.dispersion, nb.group.tau)
temp.integration <- integrate(temp_integrate_function, lower = -10*nb.group.tau, upper = 10*nb.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
nb.all.group.integrations <- c(nb.all.group.integrations, temp.integration)
}
sum(log(nb.all.group.integrations))
一般来说:我想根据数据 O 的估计模型参数计算数据 N 的(对数)似然。
更具体地说,我想知道下面的 ll_given_modPars
函数是否存在于处理数据建模(lme4
、glmm
等)的多个 R 包之一中在此抽象示例中显示(不是 运行):
library(lme4)
o_model <- lmer(observed ~ fixed.id + (1|random.id), data = O, REML = F)
n_logLik <- ll_given_modPars(model.estimates = o_model, data = N)
为简单起见,上面的虚构示例是在线性混合模型上进行的,但我最终想在处理泊松族或直接负二项式的广义线性混合模型中执行此操作(lme4
: glmer(..., family="poisson")
或 glmer.nb
).
据我所知,大多数软件包都处理参数估计(很好,我需要那个),然后使用 anova
或某种程度的东西比较相同数据的模型与固定和随机效应的不同组合这不是我想做的。
我想要相同参数在不同数据上的对数似然。
主要尝试:
在没有找到似乎正在执行的函数后,我想到 'simply' 根据我的目的调整
lme4
代码:它计算给定参数的对数似然数据,所以我想我可以使用相同的框架,但不让它优化不同的参数,而是隔离似然计算函数,只给它参数和数据。不幸的是,代码有点超出我目前的技能 https://github.com/lme4/lme4/blob/master/R/nbinom.R(我有点迷失了他们如何使用他们优化的对象)。我想自己做似然计算,从线性混合模型开始,然后逐步增加到更多相关模型。但是已经有了这个 example 我很难理解数学,即使使用指定的公式,获得的对数似然仍然不同(我不知道为什么,请参见附录中的代码)并且我担心我会花太长时间才能为更复杂的模型(例如泊松或负二项式)做这件事
在这一点上,我不确定最好的途径是什么,如果您有任何意见,我将不胜感激。
附录:尝试根据 How does lmer (from the R package lme4) compute log likelihood? 计算对数似然(或寻找封闭形式近似)。 lmer
(来自 lme4
)给出 -17.8 的对数似然,我得到 -45.56
library(lme4)
set.seed(7)
n <- 2 # number of groups
m <- 4 # number of instances per group
fixed.effect <- c(0, -2, -1, 1)
tau <- 5 # standard deviation of random effects
sigma <- 2 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau)
sim.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
sim.data$EXPECT.Y <- sim.data$GROUP.EFFECT + sim.data$INSTANCE.EFFECT
# now observe Y value, assuming normally distributed with fixed std. deviation
sim.data$OBS.Y <- rnorm(nrow(sim.data), mean=sim.data$EXPECT.Y, sigma)
model <- lmer(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = sim.data, REML=F)
summary(model)
toy.model.var <- VarCorr(model)
toy.model.sigma <- attr(toy.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
toy.model.tau.squared <- toy.model.var[[1]][1] # corresponds to variance of random effects
toy.model.betas <- model@beta
# left product, spread within gropus
toy.data <- rbind(sim.data$OBS.Y[1:4], sim.data$OBS.Y[5:8])
toy.mean.adj <- rbind(toy.data[1,] - mean(unlist(toy.data[1,])), toy.data[2,] - mean(unlist(toy.data[2,])))
toy.mean.adj.prod1 <- prod(dnorm(unlist(toy.mean.adj[1,]), mean = 0, sd = toy.model.sigma))
toy.mean.adj.prod2 <- prod(dnorm(unlist(toy.mean.adj[2,]), mean = 0, sd = toy.model.sigma))
toy.mean.adj.final.prod <- toy.mean.adj.prod1 * toy.mean.adj.prod2
# right product, spread between gropus
toy.mean.beta.adj <- rbind(mean(unlist(toy.data[1,])) - toy.model.betas, mean(unlist(toy.data[2,])) - toy.model.betas)
toy.mean.beta.adj[1,] <- toy.mean.beta.adj[1,] - c(0, toy.model.betas[1], toy.model.betas[1], toy.model.betas[1])
toy.mean.beta.adj[2,] <- toy.mean.beta.adj[2,] - c(0, toy.model.betas[1], toy.model.betas[1], toy.model.betas[1])
toy.mean.beta.adj.prod1 <- prod(dnorm(unlist(toy.mean.beta.adj[1,]), mean = 0, sd = sqrt(toy.model.sigma^2/4 + toy.model.tau.squared)) * sqrt(2/4*pi*toy.model.sigma^2))
toy.mean.beta.adj.prod2 <- prod(dnorm(unlist(toy.mean.beta.adj[2,]), mean = 0, sd = sqrt(toy.model.sigma^2/4 + toy.model.tau.squared)) * sqrt(2/4*pi*toy.model.sigma^2))
toy.mean.beta.adj.final.prod <- toy.mean.beta.adj.prod1 * toy.mean.beta.adj.prod2
toy.total.prod <- toy.mean.adj.final.prod * toy.mean.beta.adj.final.prod
log(toy.total.prod)
编辑:评论中提供了有用的 link (https://stats.stackexchange.com/questions/271903/understand-marginal-likelihood-of-mixed-effects-models)。从上面转换我的例子我可以复制对数似然
library(mvtnorm)
z = getME(model, "Z")
zt = getME(model, "Zt")
psi = bdiag(replicate(2, toy.model.tau.squared, simplify=FALSE))
betw = z%*%psi%*%zt
err = Diagonal(8, sigma(model)^2)
v = betw + err
dmvnorm(sim.data$OBS.Y, predict(model, re.form=NA), as.matrix(v), log=TRUE)
虽然我没有设法为所有这些问题提出一个封闭形式的解决方案,但我确实设法使用数值积分重现了对数似然。我在下面发布了一些小示例,说明它如何在 LMM 设置(假设正态残差随机效应)以及具有泊松和负二项式的 GLMM 中工作。请注意,当您增加样本量时,尤其是后者往往会略有不同。我的猜测是某处发生了一些舍入,但就我的目的而言,此处实现的精度已经足够好了。我现在会接受我自己的回答,但如果有人发布泊松或负二项式的封闭形式,我会很乐意接受你的回答:)
library(lme4)
library(mvtnorm)
################################################################################
# LMM numerical integration
set.seed(7)
n <- 2 # number of groups
m <- 4 # number of instances per group
fixed.effect <- c(0, -2, -1, 1)
tau <- 5 # standard deviation of random effects
sigma <- 2 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau)
normal.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
normal.data$EXPECT.Y <- normal.data$GROUP.EFFECT + normal.data$INSTANCE.EFFECT
# now observe Y value, assuming normally distributed with fixed std. deviation
normal.data$OBS.Y <- rnorm(nrow(normal.data), mean=normal.data$EXPECT.Y, sigma)
normal.model <- lmer(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = normal.data, REML=F)
summary(normal.model)
normal.model.var <- VarCorr(normal.model)
normal.model.sigma <- attr(normal.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
normal.model.tau.squared <- normal.model.var[[1]][1] # corresponds to variance of random effects
normal.model.betas <- normal.model@beta
normal.group.tau <- sqrt(normal.model.tau.squared)
normal.group.sigma <- sigma(normal.model)
normal.group.beta <- predict(normal.model, re.form=NA)[1:4]
integrate_group1 <- function(x){
p1 <- dnorm(normal.data$OBS.Y[1] - normal.group.beta[1] - x, mean = 0, sd = normal.group.sigma) * dnorm(x, mean = 0, sd = normal.group.tau)
p2 <- dnorm(normal.data$OBS.Y[2] - normal.group.beta[2] - x, mean = 0, sd = normal.group.sigma)
p3 <- dnorm(normal.data$OBS.Y[3] - normal.group.beta[3] - x, mean = 0, sd = normal.group.sigma)
p4 <- dnorm(normal.data$OBS.Y[4] - normal.group.beta[4] - x, mean = 0, sd = normal.group.sigma)
p_out <- p1 * p2 * p3 * p4
p_out
}
normal.group1.integration <- integrate(integrate_group1, lower = -10*normal.group.tau, upper = 10*normal.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
integrate_group2 <- function(x){
p1 <- dnorm(normal.data$OBS.Y[5] - normal.group.beta[1] - x, mean = 0, sd = normal.group.sigma) * dnorm(x, mean = 0, sd = normal.group.tau)
p2 <- dnorm(normal.data$OBS.Y[6] - normal.group.beta[2] - x, mean = 0, sd = normal.group.sigma)
p3 <- dnorm(normal.data$OBS.Y[7] - normal.group.beta[3] - x, mean = 0, sd = normal.group.sigma)
p4 <- dnorm(normal.data$OBS.Y[8] - normal.group.beta[4] - x, mean = 0, sd = normal.group.sigma)
p_out <- p1 * p2 * p3 * p4
p_out
}
normal.group2.integration <- integrate(integrate_group2, lower = -10*normal.group.tau, upper = 10*normal.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
log(normal.group1.integration) + log(normal.group2.integration)
#################################
# Poisson numerical integration
set.seed(13) #13
n <- 2 # number of groups
m <- 4 # number of instances per group
# effect sizes are much smaller since they are exponentiated
fixed.effect <- c(0, -0.2, -0.1, 0.2)
tau <- 1.5 # standard deviation of random effects
# sigma <- 1.5 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau) # guide effect
poisson.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
poisson.data$EXPECT.Y <- exp(poisson.data$GROUP.EFFECT + poisson.data$INSTANCE.EFFECT)
# now observe Y value, assuming normally distributed with fixed std. deviation
poisson.data$OBS.Y <- rpois(nrow(poisson.data), poisson.data$EXPECT.Y)
poisson.model <- glmer(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = poisson.data, family="poisson")
summary(poisson.model)
poisson.model.var <- VarCorr(poisson.model)
poisson.model.sigma <- attr(poisson.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
poisson.model.tau.squared <- poisson.model.var[[1]][1] # corresponds to variance of random effects
poisson.model.betas <- poisson.model@beta
poisson.group.tau <- sqrt(poisson.model.tau.squared)
poisson.group.sigma <- sigma(poisson.model)
poisson.group.beta <- predict(poisson.model, re.form=NA)[1:4]
integrate_group1 <- function(x){
p1 <- dpois(poisson.data$OBS.Y[1], lambda = exp(poisson.group.beta[1] + x)) * dnorm(x, mean = 0, sd = poisson.group.tau)
p2 <- dpois(poisson.data$OBS.Y[2], lambda = exp(poisson.group.beta[2] + x))
p3 <- dpois(poisson.data$OBS.Y[3], lambda = exp(poisson.group.beta[3] + x))
p4 <- dpois(poisson.data$OBS.Y[4], lambda = exp(poisson.group.beta[4] + x))
p_out <- p1 * p2 * p3 * p4
p_out
}
poisson.group1.integration <- integrate(integrate_group1, lower = -10*poisson.group.tau, upper = 10*poisson.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
integrate_group2 <- function(x){
p1 <- dpois(poisson.data$OBS.Y[5], lambda = exp(poisson.group.beta[1] + x)) * dnorm(x, mean = 0, sd = poisson.group.tau)
p2 <- dpois(poisson.data$OBS.Y[6], lambda = exp(poisson.group.beta[2] + x))
p3 <- dpois(poisson.data$OBS.Y[7], lambda = exp(poisson.group.beta[3] + x))
p4 <- dpois(poisson.data$OBS.Y[8], lambda = exp(poisson.group.beta[4] + x))
p_out <- p1 * p2 * p3 * p4
p_out
}
poisson.group2.integration <- integrate(integrate_group2, lower = -10*poisson.group.tau, upper = 10*poisson.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
log(poisson.group1.integration) + log(poisson.group2.integration)
#############
# Negative-Binomial numerical integration
set.seed(13) #13
n <- 100 # number of groups
m <- 4 # number of instances per group
# effect sizes are much smaller since they are exponentiated
fixed.effect <- c(0, -0.2, -0.1, 0.2)
tau <- 1.5 # standard deviation of random effects
theta <- 0.5
# sigma <- 1.5 # standard deviation of error
random.effect <- rnorm(n, mean=0, sd=tau) # guide effect
nb.data <- data.frame(GROUP.ID=as.factor(rep(1:n, each=m)),
GROUP.EFFECT=rep(random.effect, each=m),
INSTANCE.ID=as.factor(rep(1:m, times=n)),
INSTANCE.EFFECT=rep(fixed.effect, times=n))
# calculate expected Y value
nb.data$EXPECT.Y <- exp(nb.data$GROUP.EFFECT + nb.data$INSTANCE.EFFECT)
# now observe Y value, assuming normally distributed with fixed std. deviation
nb.data$OBS.Y <- rnbinom(nrow(nb.data), mu = nb.data$EXPECT.Y, size = theta)
nb.model <- glmer.nb(OBS.Y ~ INSTANCE.ID + (1|GROUP.ID), data = nb.data)
summary(nb.model)
nb.model.var <- VarCorr(nb.model)
nb.model.sigma <- attr(nb.model.var, 'sc') # corresponds to the epsilon, residual standard deviation
nb.model.tau.squared <- nb.model.var[[1]][1] # corresponds to variance of random effects
nb.model.betas <- nb.model@beta
nb.group.tau <- sqrt(nb.model.tau.squared)
nb.group.beta <- predict(nb.model, re.form=NA)[1:4]
nb.group.dispersion <- getME(nb.model, "glmer.nb.theta")
integration_function_generator <- function(input.obs, input.beta, input.dispersion, input.tau){
function(x){
p1 <- dnbinom(input.obs[1], mu = exp(input.beta[1] + x), size = input.dispersion) * dnorm(x, mean = 0, sd = input.tau)
p2 <- dnbinom(input.obs[2], mu = exp(input.beta[2] + x), size = input.dispersion)
p3 <- dnbinom(input.obs[3], mu = exp(input.beta[3] + x), size = input.dispersion)
p4 <- dnbinom(input.obs[4], mu = exp(input.beta[4] + x), size = input.dispersion)
p_out <- p1 * p2 * p3 * p4
p_out
}
}
nb.all.group.integrations <- c()
for(i in 1:n){
temp.obs <- nb.data$OBS.Y[(1:4)+(i-1)*4]
temp_integrate_function <- integration_function_generator(temp.obs, nb.group.beta, nb.group.dispersion, nb.group.tau)
temp.integration <- integrate(temp_integrate_function, lower = -10*nb.group.tau, upper = 10*nb.group.tau, subdivisions = 10000L, rel.tol = 1e-10, abs.tol = 1e-50)$value[1]
nb.all.group.integrations <- c(nb.all.group.integrations, temp.integration)
}
sum(log(nb.all.group.integrations))