具有高多边形网格的 OpenGL 3D 光线拾取
OpenGL 3D-raypicking with high poly meshes
如何使用包含高多边形网格的模型在 3d 场景中实现 3d 光线拾取?
迭代所有三角形执行三角线相交测试需要太多时间。我知道存在八叉树等方法,应该可以将这些用于场景中的模型,但我不知道如何在网格级别使用这些概念。但是,如果您在网格级别使用八叉树,那么应该如何解决超出八叉树体积边界的多边形问题?
对于实时 OpenGl 应用程序的 3d 射线与高多边形模型的 3d 射线相交,您有什么适合或推荐的方法吗?
使用八叉树。确保它适合整个网格。
此外,听起来您只是将每个分配给一个多边形 leaf/bucket,这是不对的。将多边形分配给它们出现的所有 leafs/buckets。
对于光线拾取渲染 objects(如鼠标),最好的选择是使用已经渲染的缓冲区,因为与复杂场景中的光线相交测试相比,读取它们的成本非常低。这个想法是渲染每个 pick-able 渲染 object 以根据您需要的关于它们的每个信息单独缓冲区,例如:
深度缓冲区
这将为您提供光线与 object.
相交的 3D 位置
模板缓冲区
如果每个 object 都使用其 ID(或其在 object 列表中的索引)渲染到模板,那么您可以获得所选择的 object 直接。
任何其他
那里还有二次色附件和 FBO。所以你可以添加任何其他东西,比如法向量或任何你需要的东西。
如果编码正确,所有这些只会稍微降低性能(甚至根本不会降低),因为您不需要计算任何东西,它只是每个缓冲区每个片段的一次写入。
选择本身很简单,您只需从您需要的所有缓冲区中读取相应的像素并将其转换为所需的格式。
这里是使用固定管道(无着色器)的简单 C++/VCL 示例...
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
void matrix_mul_vector(double *c,double *a,double *b,double w=1.0)
{
double q[3];
q[0]=(a[ 0]*b[0])+(a[ 4]*b[1])+(a[ 8]*b[2])+(a[12]*w);
q[1]=(a[ 1]*b[0])+(a[ 5]*b[1])+(a[ 9]*b[2])+(a[13]*w);
q[2]=(a[ 2]*b[0])+(a[ 6]*b[1])+(a[10]*b[2])+(a[14]*w);
for(int i=0;i<3;i++) c[i]=q[i];
}
//---------------------------------------------------------------------------
class glMouse
{
public:
int sx,sy; // framebuffer position [pixels]
double pos[3]; // [GCS] ray end coordinate (or z_far)
double beg[3]; // [GCS] ray start (z_near)
double dir[3]; // [GCS] ray direction
double depth; // [GCS] perpendicular distance to camera
WORD id; // selected object id
double x0,y0,xs,ys,zFar,zNear; // viewport and projection
double *eye; // camera direct matrix pointer
double fx,fy; // perspective scales
glMouse(){ eye=NULL; for (int i=0;i<3;i++) { pos[i]=0.0; beg[i]=0.0; dir[i]=0.0; } id=0; x0=0.0; y0=0.0; xs=0.0; ys=0.0; fx=0.0; fy=0.0; depth=0.0; }
glMouse(glMouse& a){ *this=a; };
~glMouse(){};
glMouse* operator = (const glMouse *a) { *this=*a; return this; };
// glMouse* operator = (const glMouse &a) { ...copy... return this; };
void resize(double _x0,double _y0,double _xs,double _ys,double *_eye)
{
double per[16];
x0=_x0; y0=_y0; xs=_xs; ys=_ys; eye=_eye;
glGetDoublev(GL_PROJECTION_MATRIX,per);
zFar =0.5*per[14]*(1.0-((per[10]-1.0)/(per[10]+1.0)));
zNear=zFar*(per[10]+1.0)/(per[10]-1.0);
fx=per[0];
fy=per[5];
}
void pick(double x,double y) // test screen x,y [pixels] position
{
int i;
double l;
GLfloat _z;
GLint _id;
sx=x; sy=ys-1.0-y;
// read depth z and linearize
glReadPixels(sx,sy,1,1,GL_DEPTH_COMPONENT,GL_FLOAT,&_z);// read depth value
depth=_z; // logarithmic
depth=(2.0*depth)-1.0; // logarithmic NDC
z=(2.0*zNear*zFar)/(zFar+zNear-(z*(zFar-zNear))); // linear <zNear,zFar>
// read object ID
glReadPixels(sx,sy,1,1,GL_STENCIL_INDEX,GL_INT,&_id); // read stencil value
id=_id;
// win [pixel] -> GL NDC <-1,+1>
x= (2.0*(x-x0)/xs)-1.0;
y=1.0-(2.0*(y-y0)/ys);
// ray start GL camera [LCS]
beg[2]=-zNear;
beg[1]=(-beg[2]/fy)*y;
beg[0]=(-beg[2]/fx)*x;
// ray direction GL camera [LCS]
for (l=0.0,i=0;i<3;i++) l+=beg[i]*beg[i]; l=1.0/sqrt(l);
for (i=0;i<3;i++) dir[0]=beg[0]*l;
// ray end GL camera [LCS]
pos[2]=-depth;
pos[1]=(-pos[2]/fy)*y;
pos[0]=(-pos[2]/fx)*x;
// convert to [GCS]
matrix_mul_vector(beg,eye,beg);
matrix_mul_vector(pos,eye,pos);
matrix_mul_vector(dir,eye,dir,0.0);
}
};
//---------------------------------------------------------------------------
// camera & mouse
double eye[16],ieye[16]; // direct view,inverse view and perspective matrices
glMouse mouse;
// objects
struct object
{
WORD id; // unique non zero ID
double m[16]; // direct model matrix
object(){}; object(object& a){ *this=a; }; ~object(){}; object* operator = (const object *a) { *this=*a; return this; }; /*object* operator = (const object &a) { ...copy... return this; };*/
};
const int objs=7;
object obj[objs];
// textures
GLuint txr=-1;
//---------------------------------------------------------------------------
void matrix_inv(double *a,double *b) // a[16] = Inverse(b[16])
{
double x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
//---------------------------------------------------------------------------
void gl_draw()
{
int i; object *o;
double a;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilMask(0xFFFF); // Write to stencil buffer
glStencilFunc(GL_ALWAYS,0,0xFFFF); // Set any stencil to 0
for (o=obj,i=0;i<objs;i++,o++)
{
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
glMultMatrixd(o->m);
glStencilFunc(GL_ALWAYS,o->id,0xFFFF); // Set any stencil to object ID
vao_draw();
}
glStencilFunc(GL_ALWAYS,0,0xFFFF); // Set any stencil to 0
glDisable(GL_STENCIL_TEST); // no need fot testing
// render mouse
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
a=0.1*mouse.depth;
glColor3f(0.0,1.0,0.0);
glBegin(GL_LINES);
glVertex3d(mouse.pos[0]+a,mouse.pos[1],mouse.pos[2]);
glVertex3d(mouse.pos[0]-a,mouse.pos[1],mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1]+a,mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1]-a,mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1],mouse.pos[2]+a);
glVertex3d(mouse.pos[0],mouse.pos[1],mouse.pos[2]-a);
glEnd();
Form1->Caption=AnsiString().sprintf("%.3lf , %.3lf , %.3lf : %u",mouse.pos[0],mouse.pos[1],mouse.pos[2],mouse.id);
// debug buffer views
if ((Form1->ck_depth->Checked)||(Form1->ck_stencil->Checked))
{
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,txr);
GLfloat *f=new GLfloat[xs*ys],z;
if (Form1->ck_depth ->Checked)
{
glReadPixels(0,0,xs,ys,GL_DEPTH_COMPONENT,GL_FLOAT,f);
for (i=0;i<xs*ys;i++) f[i]=1.0-(2.0*mouse.zNear)/(mouse.zFar+mouse.zNear-(((2.0*f[i])-1.0)*(mouse.zFar-mouse.zNear)));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, xs, ys, 0, GL_RED, GL_FLOAT, f);
}
if (Form1->ck_stencil->Checked)
{
glReadPixels(0,0,xs,ys,GL_STENCIL_INDEX,GL_FLOAT,f);
for (i=0;i<xs*ys;i++) f[i]/=float(objs);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, xs, ys, 0, GL_GREEN, GL_FLOAT, f);
}
delete[] f;
glColor3f(1.0,1.0,1.0);
glBegin(GL_QUADS);
glTexCoord2f(1.0,0.0); glVertex2f(+1.0,-1.0);
glTexCoord2f(1.0,1.0); glVertex2f(+1.0,+1.0);
glTexCoord2f(0.0,1.0); glVertex2f(-1.0,+1.0);
glTexCoord2f(0.0,0.0); glVertex2f(-1.0,-1.0);
glEnd();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glDisable(GL_TEXTURE_2D);
glEnable(GL_DEPTH_TEST);
}
glFlush();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
int i;
object *o;
gl_init(Handle);
vao_init();
// init textures
glGenTextures(1,&txr);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,txr);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_COPY);
glDisable(GL_TEXTURE_2D);
// init objects
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-1.5,4.7,-8.0);
for (o=obj,i=0;i<objs;i++,o++)
{
o->id=i+1; // unique non zero ID
glGetDoublev(GL_MODELVIEW_MATRIX,o->m);
glRotatef(360.0/float(objs),0.0,0.0,1.0);
glTranslatef(-3.0,0.0,0.0);
}
for (o=obj,i=0;i<objs;i++,o++)
{
glLoadMatrixd(o->m);
glRotatef(180.0*Random(),Random(),Random(),Random());
glGetDoublev(GL_MODELVIEW_MATRIX,o->m);
}
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
glDeleteTextures(1,&txr);
gl_exit();
vao_exit();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
gl_resize(ClientWidth,ClientHeight);
// obtain/init matrices
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0,0,-15.0);
glGetDoublev(GL_MODELVIEW_MATRIX,ieye);
matrix_inv(eye,ieye);
mouse.resize(0,0,xs,ys,eye);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseWheel(TObject *Sender, TShiftState Shift, int WheelDelta, TPoint &MousePos, bool &Handled)
{
GLfloat dz=2.0;
if (WheelDelta<0) dz=-dz;
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
glTranslatef(0,0,dz);
glGetDoublev(GL_MODELVIEW_MATRIX,ieye);
matrix_inv(eye,ieye);
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift, int X, int Y)
{
mouse.pick(X,Y);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::ck_depthClick(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
此处预览左起 RGB、深度、模板:
此处截取GIF:
前3个数字是[GCS]
中选取像素的3D位置,标题中的最后一个数字是选取的ID 其中 0
表示没有 object.
示例使用的是此处的 gl_simple,h
:
您可以忽略 VCL 内容,因为它并不重要,只需将事件移植到您的环境中...
那么怎么办:
正在渲染
您需要将模板缓冲区添加到您的 GL window 像素格式中,所以在我的例子中我只添加:
pfd.cStencilBits = 16;
从 gl_simple.h
到 gl_init()
函数。也将它的位添加到 glClear
并将每个 objects 模板设置为其 ID 就像我在 gl_draw()
.
中所做的那样
采摘
我写了一个小 glMouse
class 来完成所有繁重的工作。在每次更改透视图、视图或视口时调用其 glMouse::resize
函数。这将为以后的计算准备所有需要的常量。当心它需要直接 camera/view 矩阵 !!!
现在在每次鼠标移动(或单击或其他)时调用 glMouse::pick
函数,然后使用 id
这样的结果,这将 return ID picked object was rendered with or pos
which is the 3D coordinate in global world coordinates ([GCS]
) of the ray object路口.
该函数只读取深度和模板缓冲区。像这里这样线性化深度:
并计算 [GCS]
中的射线 beg,dir,pos,depth
。
正常
你有 2 个选项,要么将你的法线渲染为另一个缓冲区,这是最简单和最精确的。或者读取所选像素周围 2 个或更多相邻像素的深度,计算它们的 3D 位置。如果需要,使用叉积计算你的正常值和平均值。但这会导致边缘出现伪影。
如评论中所述,为了提高准确性,您应该使用线性深度缓冲区而不是像这样的线性化对数缓冲区:
顺便说一句,我在这里使用了相同的技术(在基于 GDI 的 SW 等距渲染中):
[Edit1] 8 位模板缓冲区
现在可靠的模板位宽只有 8 位,这将 id 的数量限制为 255。在大多数情况下这还不够。解决方法是将索引渲染为颜色,然后将帧存储到 CPU 内存中,然后正常渲染颜色。然后在需要时使用存储的框架进行拾取。渲染到纹理或颜色附件也是可能的。
[Edit2]一些相关链接
如何使用包含高多边形网格的模型在 3d 场景中实现 3d 光线拾取?
迭代所有三角形执行三角线相交测试需要太多时间。我知道存在八叉树等方法,应该可以将这些用于场景中的模型,但我不知道如何在网格级别使用这些概念。但是,如果您在网格级别使用八叉树,那么应该如何解决超出八叉树体积边界的多边形问题?
对于实时 OpenGl 应用程序的 3d 射线与高多边形模型的 3d 射线相交,您有什么适合或推荐的方法吗?
使用八叉树。确保它适合整个网格。
此外,听起来您只是将每个分配给一个多边形 leaf/bucket,这是不对的。将多边形分配给它们出现的所有 leafs/buckets。
对于光线拾取渲染 objects(如鼠标),最好的选择是使用已经渲染的缓冲区,因为与复杂场景中的光线相交测试相比,读取它们的成本非常低。这个想法是渲染每个 pick-able 渲染 object 以根据您需要的关于它们的每个信息单独缓冲区,例如:
深度缓冲区
这将为您提供光线与 object.
相交的 3D 位置模板缓冲区
如果每个 object 都使用其 ID(或其在 object 列表中的索引)渲染到模板,那么您可以获得所选择的 object 直接。
任何其他
那里还有二次色附件和 FBO。所以你可以添加任何其他东西,比如法向量或任何你需要的东西。
如果编码正确,所有这些只会稍微降低性能(甚至根本不会降低),因为您不需要计算任何东西,它只是每个缓冲区每个片段的一次写入。
选择本身很简单,您只需从您需要的所有缓冲区中读取相应的像素并将其转换为所需的格式。
这里是使用固定管道(无着色器)的简单 C++/VCL 示例...
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---------------------------------------------------------------------------
void matrix_mul_vector(double *c,double *a,double *b,double w=1.0)
{
double q[3];
q[0]=(a[ 0]*b[0])+(a[ 4]*b[1])+(a[ 8]*b[2])+(a[12]*w);
q[1]=(a[ 1]*b[0])+(a[ 5]*b[1])+(a[ 9]*b[2])+(a[13]*w);
q[2]=(a[ 2]*b[0])+(a[ 6]*b[1])+(a[10]*b[2])+(a[14]*w);
for(int i=0;i<3;i++) c[i]=q[i];
}
//---------------------------------------------------------------------------
class glMouse
{
public:
int sx,sy; // framebuffer position [pixels]
double pos[3]; // [GCS] ray end coordinate (or z_far)
double beg[3]; // [GCS] ray start (z_near)
double dir[3]; // [GCS] ray direction
double depth; // [GCS] perpendicular distance to camera
WORD id; // selected object id
double x0,y0,xs,ys,zFar,zNear; // viewport and projection
double *eye; // camera direct matrix pointer
double fx,fy; // perspective scales
glMouse(){ eye=NULL; for (int i=0;i<3;i++) { pos[i]=0.0; beg[i]=0.0; dir[i]=0.0; } id=0; x0=0.0; y0=0.0; xs=0.0; ys=0.0; fx=0.0; fy=0.0; depth=0.0; }
glMouse(glMouse& a){ *this=a; };
~glMouse(){};
glMouse* operator = (const glMouse *a) { *this=*a; return this; };
// glMouse* operator = (const glMouse &a) { ...copy... return this; };
void resize(double _x0,double _y0,double _xs,double _ys,double *_eye)
{
double per[16];
x0=_x0; y0=_y0; xs=_xs; ys=_ys; eye=_eye;
glGetDoublev(GL_PROJECTION_MATRIX,per);
zFar =0.5*per[14]*(1.0-((per[10]-1.0)/(per[10]+1.0)));
zNear=zFar*(per[10]+1.0)/(per[10]-1.0);
fx=per[0];
fy=per[5];
}
void pick(double x,double y) // test screen x,y [pixels] position
{
int i;
double l;
GLfloat _z;
GLint _id;
sx=x; sy=ys-1.0-y;
// read depth z and linearize
glReadPixels(sx,sy,1,1,GL_DEPTH_COMPONENT,GL_FLOAT,&_z);// read depth value
depth=_z; // logarithmic
depth=(2.0*depth)-1.0; // logarithmic NDC
z=(2.0*zNear*zFar)/(zFar+zNear-(z*(zFar-zNear))); // linear <zNear,zFar>
// read object ID
glReadPixels(sx,sy,1,1,GL_STENCIL_INDEX,GL_INT,&_id); // read stencil value
id=_id;
// win [pixel] -> GL NDC <-1,+1>
x= (2.0*(x-x0)/xs)-1.0;
y=1.0-(2.0*(y-y0)/ys);
// ray start GL camera [LCS]
beg[2]=-zNear;
beg[1]=(-beg[2]/fy)*y;
beg[0]=(-beg[2]/fx)*x;
// ray direction GL camera [LCS]
for (l=0.0,i=0;i<3;i++) l+=beg[i]*beg[i]; l=1.0/sqrt(l);
for (i=0;i<3;i++) dir[0]=beg[0]*l;
// ray end GL camera [LCS]
pos[2]=-depth;
pos[1]=(-pos[2]/fy)*y;
pos[0]=(-pos[2]/fx)*x;
// convert to [GCS]
matrix_mul_vector(beg,eye,beg);
matrix_mul_vector(pos,eye,pos);
matrix_mul_vector(dir,eye,dir,0.0);
}
};
//---------------------------------------------------------------------------
// camera & mouse
double eye[16],ieye[16]; // direct view,inverse view and perspective matrices
glMouse mouse;
// objects
struct object
{
WORD id; // unique non zero ID
double m[16]; // direct model matrix
object(){}; object(object& a){ *this=a; }; ~object(){}; object* operator = (const object *a) { *this=*a; return this; }; /*object* operator = (const object &a) { ...copy... return this; };*/
};
const int objs=7;
object obj[objs];
// textures
GLuint txr=-1;
//---------------------------------------------------------------------------
void matrix_inv(double *a,double *b) // a[16] = Inverse(b[16])
{
double x,y,z;
// transpose of rotation matrix
a[ 0]=b[ 0];
a[ 5]=b[ 5];
a[10]=b[10];
x=b[1]; a[1]=b[4]; a[4]=x;
x=b[2]; a[2]=b[8]; a[8]=x;
x=b[6]; a[6]=b[9]; a[9]=x;
// copy projection part
a[ 3]=b[ 3];
a[ 7]=b[ 7];
a[11]=b[11];
a[15]=b[15];
// convert origin: new_pos = - new_rotation_matrix * old_pos
x=(a[ 0]*b[12])+(a[ 4]*b[13])+(a[ 8]*b[14]);
y=(a[ 1]*b[12])+(a[ 5]*b[13])+(a[ 9]*b[14]);
z=(a[ 2]*b[12])+(a[ 6]*b[13])+(a[10]*b[14]);
a[12]=-x;
a[13]=-y;
a[14]=-z;
}
//---------------------------------------------------------------------------
void gl_draw()
{
int i; object *o;
double a;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
glStencilMask(0xFFFF); // Write to stencil buffer
glStencilFunc(GL_ALWAYS,0,0xFFFF); // Set any stencil to 0
for (o=obj,i=0;i<objs;i++,o++)
{
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
glMultMatrixd(o->m);
glStencilFunc(GL_ALWAYS,o->id,0xFFFF); // Set any stencil to object ID
vao_draw();
}
glStencilFunc(GL_ALWAYS,0,0xFFFF); // Set any stencil to 0
glDisable(GL_STENCIL_TEST); // no need fot testing
// render mouse
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
a=0.1*mouse.depth;
glColor3f(0.0,1.0,0.0);
glBegin(GL_LINES);
glVertex3d(mouse.pos[0]+a,mouse.pos[1],mouse.pos[2]);
glVertex3d(mouse.pos[0]-a,mouse.pos[1],mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1]+a,mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1]-a,mouse.pos[2]);
glVertex3d(mouse.pos[0],mouse.pos[1],mouse.pos[2]+a);
glVertex3d(mouse.pos[0],mouse.pos[1],mouse.pos[2]-a);
glEnd();
Form1->Caption=AnsiString().sprintf("%.3lf , %.3lf , %.3lf : %u",mouse.pos[0],mouse.pos[1],mouse.pos[2],mouse.id);
// debug buffer views
if ((Form1->ck_depth->Checked)||(Form1->ck_stencil->Checked))
{
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,txr);
GLfloat *f=new GLfloat[xs*ys],z;
if (Form1->ck_depth ->Checked)
{
glReadPixels(0,0,xs,ys,GL_DEPTH_COMPONENT,GL_FLOAT,f);
for (i=0;i<xs*ys;i++) f[i]=1.0-(2.0*mouse.zNear)/(mouse.zFar+mouse.zNear-(((2.0*f[i])-1.0)*(mouse.zFar-mouse.zNear)));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, xs, ys, 0, GL_RED, GL_FLOAT, f);
}
if (Form1->ck_stencil->Checked)
{
glReadPixels(0,0,xs,ys,GL_STENCIL_INDEX,GL_FLOAT,f);
for (i=0;i<xs*ys;i++) f[i]/=float(objs);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, xs, ys, 0, GL_GREEN, GL_FLOAT, f);
}
delete[] f;
glColor3f(1.0,1.0,1.0);
glBegin(GL_QUADS);
glTexCoord2f(1.0,0.0); glVertex2f(+1.0,-1.0);
glTexCoord2f(1.0,1.0); glVertex2f(+1.0,+1.0);
glTexCoord2f(0.0,1.0); glVertex2f(-1.0,+1.0);
glTexCoord2f(0.0,0.0); glVertex2f(-1.0,-1.0);
glEnd();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glDisable(GL_TEXTURE_2D);
glEnable(GL_DEPTH_TEST);
}
glFlush();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
int i;
object *o;
gl_init(Handle);
vao_init();
// init textures
glGenTextures(1,&txr);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,txr);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_COPY);
glDisable(GL_TEXTURE_2D);
// init objects
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-1.5,4.7,-8.0);
for (o=obj,i=0;i<objs;i++,o++)
{
o->id=i+1; // unique non zero ID
glGetDoublev(GL_MODELVIEW_MATRIX,o->m);
glRotatef(360.0/float(objs),0.0,0.0,1.0);
glTranslatef(-3.0,0.0,0.0);
}
for (o=obj,i=0;i<objs;i++,o++)
{
glLoadMatrixd(o->m);
glRotatef(180.0*Random(),Random(),Random(),Random());
glGetDoublev(GL_MODELVIEW_MATRIX,o->m);
}
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
glDeleteTextures(1,&txr);
gl_exit();
vao_exit();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
gl_resize(ClientWidth,ClientHeight);
// obtain/init matrices
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0,0,-15.0);
glGetDoublev(GL_MODELVIEW_MATRIX,ieye);
matrix_inv(eye,ieye);
mouse.resize(0,0,xs,ys,eye);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseWheel(TObject *Sender, TShiftState Shift, int WheelDelta, TPoint &MousePos, bool &Handled)
{
GLfloat dz=2.0;
if (WheelDelta<0) dz=-dz;
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(ieye);
glTranslatef(0,0,dz);
glGetDoublev(GL_MODELVIEW_MATRIX,ieye);
matrix_inv(eye,ieye);
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift, int X, int Y)
{
mouse.pick(X,Y);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::ck_depthClick(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
此处预览左起 RGB、深度、模板:
此处截取GIF:
前3个数字是[GCS]
中选取像素的3D位置,标题中的最后一个数字是选取的ID 其中 0
表示没有 object.
示例使用的是此处的 gl_simple,h
:
您可以忽略 VCL 内容,因为它并不重要,只需将事件移植到您的环境中...
那么怎么办:
正在渲染
您需要将模板缓冲区添加到您的 GL window 像素格式中,所以在我的例子中我只添加:
pfd.cStencilBits = 16;
从
中所做的那样gl_simple.h
到gl_init()
函数。也将它的位添加到glClear
并将每个 objects 模板设置为其 ID 就像我在gl_draw()
.采摘
我写了一个小
glMouse
class 来完成所有繁重的工作。在每次更改透视图、视图或视口时调用其glMouse::resize
函数。这将为以后的计算准备所有需要的常量。当心它需要直接 camera/view 矩阵 !!!现在在每次鼠标移动(或单击或其他)时调用
glMouse::pick
函数,然后使用id
这样的结果,这将 return ID picked object was rendered with orpos
which is the 3D coordinate in global world coordinates ([GCS]
) of the ray object路口.该函数只读取深度和模板缓冲区。像这里这样线性化深度:
并计算
[GCS]
中的射线beg,dir,pos,depth
。正常
你有 2 个选项,要么将你的法线渲染为另一个缓冲区,这是最简单和最精确的。或者读取所选像素周围 2 个或更多相邻像素的深度,计算它们的 3D 位置。如果需要,使用叉积计算你的正常值和平均值。但这会导致边缘出现伪影。
如评论中所述,为了提高准确性,您应该使用线性深度缓冲区而不是像这样的线性化对数缓冲区:
顺便说一句,我在这里使用了相同的技术(在基于 GDI 的 SW 等距渲染中):
[Edit1] 8 位模板缓冲区
现在可靠的模板位宽只有 8 位,这将 id 的数量限制为 255。在大多数情况下这还不够。解决方法是将索引渲染为颜色,然后将帧存储到 CPU 内存中,然后正常渲染颜色。然后在需要时使用存储的框架进行拾取。渲染到纹理或颜色附件也是可能的。
[Edit2]一些相关链接