尝试使用 Assimp GLM 从 MD5 文件加载 OpenGL 中的动画

Trying to load animations in OpenGL from an MD5 file using Assimp GLM

我正在尝试按照 here ( at ogldev ) mentioned in this answer 上的教程进行操作。

然而,我面临一些问题,我认为这些问题与 Assimp 的行主要订单与 GLM 的列主要订单有关,尽管我不太确定。

我已经尝试了一些变体和命令,看看是否有任何效果,但无济于事。

Here ( Gist ) 是我用来加载完整 MD5 文件的 Class。以及我目前的结果。

而且,这是我认为出错的部分,当我尝试更新骨骼转换矩阵时。

void SkeletalModel::ReadNodeHierarchyAnimation(float _animationTime, const aiNode* _node,
        const glm::mat4& _parentTransform)
    {

        std::string node_name = _node->mName.data;

        const aiAnimation * p_animation = scene->mAnimations[0];

        glm::mat4 node_transformation(1.0f);

        convert_aimatrix_to_glm(node_transformation, _node->mTransformation);
        // Transpose it.
        node_transformation = glm::transpose(node_transformation);

        const aiNodeAnim * node_anim = FindNodeAnim(p_animation, node_name);

        if (node_anim) {

            //glm::mat4 transformation_matrix(1.0f);

            glm::mat4 translation_matrix(1.0f);
            glm::mat4 rotation_matrix(1.0f);
            glm::mat4 scaling_matrix(1.0f);

            aiVector3D translation;
            CalcInterpolatedPosition(translation, _animationTime, node_anim);

            translation_matrix = glm::translate(translation_matrix, glm::vec3(translation.x, translation.y, translation.z));

            aiQuaternion rotation;
            CalcInterpolatedRotation(rotation, _animationTime, node_anim);

            // Transpose the matrix after this.
            convert_aimatrix_to_glm(rotation_matrix, rotation.GetMatrix());
            //rotation_matrix = glm::transpose(rotation_matrix);

            aiVector3D scaling;
            CalcInterpolatedScaling(scaling, _animationTime, node_anim);
            scaling_matrix = glm::scale(scaling_matrix, glm::vec3(scaling.x, scaling.y, scaling.z));

            node_transformation = scaling_matrix * rotation_matrix * translation_matrix;
            //node_transformation = translation_matrix * rotation_matrix * scaling_matrix;

        }

        glm::mat4 global_transformation =  node_transformation * _parentTransform;

        if (boneMapping.find(node_name) != boneMapping.end()) {

            // Update the Global Transformation.
            auto bone_index = boneMapping[node_name];

            //boneInfoData[bone_index].finalTransformation = globalInverseTransform * global_transformation * boneInfoData[bone_index].boneOffset;
            boneInfoData[bone_index].finalTransformation = boneInfoData[bone_index].boneOffset * global_transformation * globalInverseTransform;
            //boneInfoData[bone_index].finalTransformation = globalInverseTransform;
        }

        for (auto i = 0; i < _node->mNumChildren; i++) {
            ReadNodeHierarchyAnimation(_animationTime, _node->mChildren[i], global_transformation);
        }

    }

我的当前输出:

我尝试遍历代码中使用的每个矩阵来检查我是否应该转置它。我是否应该更改矩阵乘法顺序。我找不到我的问题。

如果有人能在这里指出我的错误或指导我阅读其他教程以帮助我加载动画,那就太好了。

另外,我看到了在学习这个的初始阶段使用基本模型的建议。但是我被告知 Obj 格式不支持动画,在此之前我一直只使用 Obj。我可以使用 blender 以类似于本教程中所示的 MD5 的方式导出的任何其他格式吗?

几年前我用Assimp库做了一个动画场景,基本上是按照这些教程做的。 http://ogldev.atspace.co.uk/www/tutorial38/tutorial38.html and http://sourceforge.net/projects/assimp/forums/forum/817654/topic/3880745

虽然我使用的是旧的 X 格式(Blender 可以使用 X,使用扩展),但我可以肯定地确认您需要转置 assimp 动画矩阵以用于 GML。

关于使用其他格式,只要 Blender(导入、编辑、导出)和 Assimp 支持,您可以使用任何您喜欢的格式。准备好在更改格式时进行大量试验和错误!

我会 post 我的工作系统中的相关片段,而不是试图理解您的代码,它显示了骨骼矩阵的计算。希望这会对您有所帮助,因为我记得我遇到过与您描述的相同的问题,并且花了一些时间来追踪它。代码很简单 'C'.

您可以在代码末尾看到转置发生的位置。

// calculateAnimPose() calculates the bone transformations for a mesh at a particular time in an animation (in scene)
// Each bone transformation is relative to the rest pose.
void calculateAnimPose(aiMesh* mesh, const aiScene* scene, int animNum, float poseTime, mat4 *boneTransforms) {

    if(mesh->mNumBones == 0 || animNum < 0) {    // animNum = -1 for no animation
        boneTransforms[0] = mat4(1.0);           // so, just return a single identity matrix
        return;
    }
    if(scene->mNumAnimations <= (unsigned int)animNum)    
        failInt("No animation with number:", animNum);

    aiAnimation *anim = scene->mAnimations[animNum];  // animNum = 0 for the first animation

    // Set transforms from bone channels 
    for(unsigned int chanID=0; chanID < anim->mNumChannels; chanID++) {
        aiNodeAnim *channel = anim->mChannels[chanID];        
        aiVector3D curPosition;
        aiQuaternion curRotation;   // interpolation of scaling purposefully left out for simplicity.

        // find the node which the channel affects
        aiNode* targetNode = scene->mRootNode->FindNode( channel->mNodeName );

        // find current positionKey
        size_t posIndex = 0;
        for(posIndex=0; posIndex+1 < channel->mNumPositionKeys; posIndex++)
            if( channel->mPositionKeys[posIndex + 1].mTime > poseTime )
                break;   // the next key lies in the future - so use the current key

        // This assumes that there is at least one key
        if(posIndex+1 == channel-> mNumPositionKeys)
             curPosition = channel->mPositionKeys[posIndex].mValue;  
        else {
            float t0 = channel->mPositionKeys[posIndex].mTime;   // Interpolate position/translation
            float t1 = channel->mPositionKeys[posIndex+1].mTime;
            float weight1 = (poseTime-t0)/(t1-t0);  

            curPosition = channel->mPositionKeys[posIndex].mValue * (1.0f - weight1) + 
                          channel->mPositionKeys[posIndex+1].mValue * weight1;
        }

        // find current rotationKey
        size_t rotIndex = 0;
        for(rotIndex=0; rotIndex+1 < channel->mNumRotationKeys; rotIndex++)
            if( channel->mRotationKeys[rotIndex + 1].mTime > poseTime )
                break;   // the next key lies in the future - so use the current key

        if(rotIndex+1 == channel-> mNumRotationKeys)
            curRotation = channel->mRotationKeys[rotIndex].mValue;
        else {
            float t0 = channel->mRotationKeys[rotIndex].mTime;   // Interpolate using quaternions
            float t1 = channel->mRotationKeys[rotIndex+1].mTime;
            float weight1 = (poseTime-t0)/(t1-t0); 

            aiQuaternion::Interpolate(curRotation, channel->mRotationKeys[rotIndex].mValue, 
                                      channel->mRotationKeys[rotIndex+1].mValue, weight1);
            curRotation = curRotation.Normalize();
        }

        aiMatrix4x4 trafo = aiMatrix4x4(curRotation.GetMatrix());             // now build a rotation matrix
        trafo.a4 = curPosition.x; trafo.b4 = curPosition.y; trafo.c4 = curPosition.z; // add the translation
        targetNode->mTransformation = trafo;  // assign this transformation to the node
    }

    // Calculate the total transformation for each bone relative to the rest pose
    for(unsigned int a=0; a<mesh->mNumBones; a++) { 
        const aiBone* bone = mesh->mBones[a];
        aiMatrix4x4 bTrans = bone->mOffsetMatrix;  // start with mesh-to-bone matrix to subtract rest pose

        // Find the bone, then loop through the nodes/bones on the path up to the root. 
        for(aiNode* node = scene->mRootNode->FindNode(bone->mName); node!=NULL; node=node->mParent)
            bTrans = node->mTransformation * bTrans;   // add each bone's current relative transformation

        boneTransforms[a] =  mat4(vec4(bTrans.a1, bTrans.a2, bTrans.a3, bTrans.a4),
                                  vec4(bTrans.b1, bTrans.b2, bTrans.b3, bTrans.b4),
                                  vec4(bTrans.c1, bTrans.c2, bTrans.c3, bTrans.c4), 
                                  vec4(bTrans.d1, bTrans.d2, bTrans.d3, bTrans.d4));   // Convert to mat4
    }
}