Pre-Padding 和 Post-Padding 文本在为 tf.nn.embedding_lookup 预处理不同文本大小时的区别

Difference of Pre-Padding and Post-Padding text when preprossing different text sizes for tf.nn.embedding_lookup

我在向嵌入层馈送时看到了两种类型的填充。

eg:

considering two sentences:

word1 = "I am a dog person."

word2 = "Krishni and Pradeepa both love cats."

word1_int = [1,2,3,4,5,6]

word2_int = [7,8,9,10,11,12,13]

padding both words to length = 8

padding method 1(putting 0s at the beginning)

word1_int = [0,0,1,2,3,4,5,6]

word2_int = [0,7,8,9,10,11,12,13]

padding method 2(putting 0s at the end)

word1_int = [1,2,3,4,5,6,0,0]

word2_int = [7,8,9,10,11,12,13,0]

我正在尝试使用 20 个新闻组数据集进行 在线 分类。我目前正在使用第一种方法来填充我的文本。

问题:在我的实现中使用第一种方法比使用另一种方法有什么优势吗?

提前致谢!

我的代码如下所示:

from collections import Counter
import tensorflow as tf
from sklearn.datasets import fetch_20newsgroups
import matplotlib as mplt
mplt.use('agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
from string import punctuation
from sklearn.preprocessing import LabelBinarizer
import numpy as np
from nltk.corpus import stopwords
import nltk
nltk.download('stopwords')



def pre_process():
    newsgroups_data = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))

    words = []
    temp_post_text = []
    print(len(newsgroups_data.data))

    for post in newsgroups_data.data:

        all_text = ''.join([text for text in post if text not in punctuation])
        all_text = all_text.split('\n')
        all_text = ''.join(all_text)
        temp_text = all_text.split(" ")

        for word in temp_text:
            if word.isalpha():
                temp_text[temp_text.index(word)] = word.lower()

        # temp_text = [word for word in temp_text if word not in stopwords.words('english')]
        temp_text = list(filter(None, temp_text))
        temp_text = ' '.join([i for i in temp_text if not i.isdigit()])
        words += temp_text.split(" ")
        temp_post_text.append(temp_text)

    # temp_post_text = list(filter(None, temp_post_text))

    dictionary = Counter(words)
    # deleting spaces
    # del dictionary[""]
    sorted_split_words = sorted(dictionary, key=dictionary.get, reverse=True)
    vocab_to_int = {c: i for i, c in enumerate(sorted_split_words,1)}

    message_ints = []
    for message in temp_post_text:
        temp_message = message.split(" ")
        message_ints.append([vocab_to_int[i] for i in temp_message])


    # maximum message length = 6577

    # message_lens = Counter([len(x) for x in message_ints])AAA

    seq_length = 6577
    num_messages = len(temp_post_text)
    features = np.zeros([num_messages, seq_length], dtype=int)
    for i, row in enumerate(message_ints):
        print(features[i, -len(row):])
        features[i, -len(row):] = np.array(row)[:seq_length]
        print(features[i, -len(row):])

    lb = LabelBinarizer()
    lbl = newsgroups_data.target
    labels = np.reshape(lbl, [-1])
    labels = lb.fit_transform(labels)

    return features, labels, len(sorted_split_words)+1


def get_batches(x, y, batch_size=1):
    for ii in range(0, len(y), batch_size):
        yield x[ii:ii + batch_size], y[ii:ii + batch_size]


def plot(noOfWrongPred, dataPoints):
    font_size = 14
    fig = plt.figure(dpi=100,figsize=(10, 6))
    mplt.rcParams.update({'font.size': font_size})
    plt.title("Distribution of wrong predictions", fontsize=font_size)
    plt.ylabel('Error rate', fontsize=font_size)
    plt.xlabel('Number of data points', fontsize=font_size)

    plt.plot(dataPoints, noOfWrongPred, label='Prediction', color='blue', linewidth=1.8)
    # plt.legend(loc='upper right', fontsize=14)

    plt.savefig('distribution of wrong predictions.png')
    # plt.show()



def train_test():
    features, labels, n_words = pre_process()

    print(features.shape)
    print(labels.shape)

    # Defining Hyperparameters

    lstm_layers = 1
    batch_size = 1
    lstm_size = 200
    learning_rate = 0.01

    # --------------placeholders-------------------------------------

    # Create the graph object
    graph = tf.Graph()
    # Add nodes to the graph
    with graph.as_default():

        tf.set_random_seed(1)

        inputs_ = tf.placeholder(tf.int32, [None, None], name="inputs")
        # labels_ = tf.placeholder(dtype= tf.int32)
        labels_ = tf.placeholder(tf.float32, [None, None], name="labels")

        # output_keep_prob is the dropout added to the RNN's outputs, the dropout will have no effect on the calculation of the subsequent states.
        keep_prob = tf.placeholder(tf.float32, name="keep_prob")

        # Size of the embedding vectors (number of units in the embedding layer)
        embed_size = 300

        # generating random values from a uniform distribution (minval included and maxval excluded)
        embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1),trainable=True)
        embed = tf.nn.embedding_lookup(embedding, inputs_)

        print(embedding.shape)
        print(embed.shape)
        print(embed[0])

        # Your basic LSTM cell
        lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)


        # Add dropout to the cell
        drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)

        # Stack up multiple LSTM layers, for deep learning
        cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)

        # Getting an initial state of all zeros
        initial_state = cell.zero_state(batch_size, tf.float32)

        outputs, final_state = tf.nn.dynamic_rnn(cell, embed, initial_state=initial_state)

        # hidden layer
        hidden = tf.layers.dense(outputs[:, -1], units=25, activation=tf.nn.relu)

        print(hidden.shape)

        logit = tf.contrib.layers.fully_connected(hidden, num_outputs=20, activation_fn=None)

        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=labels_))

        optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

        saver = tf.train.Saver()

    # ----------------------------online training-----------------------------------------

    with tf.Session(graph=graph) as sess:
        tf.set_random_seed(1)
        sess.run(tf.global_variables_initializer())
        iteration = 1
        state = sess.run(initial_state)
        wrongPred = 0
        noOfWrongPreds = []
        dataPoints = []

        for ii, (x, y) in enumerate(get_batches(features, labels, batch_size), 1):

            feed = {inputs_: x,
                    labels_: y,
                    keep_prob: 0.5,
                    initial_state: state}

            embedzz = sess.run(embedding, feed_dict=feed)

            print(embedzz)


            predictions = tf.nn.softmax(logit).eval(feed_dict=feed)

            print("----------------------------------------------------------")
            print("Iteration: {}".format(iteration))

            isequal = np.equal(np.argmax(predictions[0], 0), np.argmax(y[0], 0))

            print(np.argmax(predictions[0], 0))
            print(np.argmax(y[0], 0))

            if not (isequal):
                wrongPred += 1

            print("nummber of wrong preds: ",wrongPred)

            if iteration%50 == 0:
                noOfWrongPreds.append(wrongPred/iteration)
                dataPoints.append(iteration)

            loss, states, _ = sess.run([cost, final_state, optimizer], feed_dict=feed)

            print("Train loss: {:.3f}".format(loss))
            iteration += 1

        saver.save(sess, "checkpoints/sentiment.ckpt")
        errorRate = wrongPred / len(labels)
        print("ERRORS: ", wrongPred)
        print("ERROR RATE: ", errorRate)
        plot(noOfWrongPreds, dataPoints)


if __name__ == '__main__':
    train_test()

这是我用来填充所有句子的代码示例。

  seq_length = 6577
  num_messages = len(temp_post_text)
    features = np.zeros([num_messages, seq_length], dtype=int)
    for i, row in enumerate(message_ints):
        print(features[i, -len(row):])
        features[i, -len(row):] = np.array(row)[:seq_length]
        print(features[i, -len(row):])

通常,当我们使用 LSTM 或 RNN 时,我们使用最终输出或隐藏状态并将其传递来进行预测。您也在做与此行相同的事情:

logit = tf.contrib.layers.fully_connected(hidden, num_outputs=20, activation_fn=None)

这里两种填充方法有所区别。如果你使用第二种填充方法,post-padding,那么最终的隐藏状态将被清除,因为它大部分是 0,而通过使用第一种方法,我们确保隐藏状态状态输出正确。

还记得我们在 RNN 中遇到的问题,梯度消失。因此,如果您使用预填充,那么 RNN 会在最后记住实际值,而对于 post-填充,实际值在开始处。因此,如果有长填充,模型很可能会忘记需要记住的实际值是什么,并且模型可能表现不佳。 所以,我个人建议你使用预填充而不是 post-padding.