计算 model_matrix 中所有可能的相互作用
Calculate all possible interactions in model_matrix
我正在模拟具有波动数量变量的数据。作为这种情况的一部分,我需要计算一个包含所有可能组合的模型矩阵。有关示例,请参见以下 reprex。我可以通过将公式指定为 ~ .*.
来获得所有的二次交互。但是,这个特定的数据集有 3 个变量 (ndim <- 3
)。通过将公式指定为 ~ .^3
,我可以获得所有双向和三向交互。问题是我可能需要计算 4 个以上的变量,所以我希望能够对此进行概括。我已尝试将公式指定为 ~ .^ndim
,但这会引发错误。
有没有办法用变量定义公式中的幂?
library(tidyverse)
library(mvtnorm)
library(modelr)
ndim <- 3
data <- rmvnorm(100, mean = rep(0, ndim)) %>%
as_tibble(.name_repair = ~ paste0("dim_", seq_len(ndim)))
model_matrix(data, ~ .*.)
#> # A tibble: 100 x 7
#> `(Intercept)` dim_1 dim_2 dim_3 `dim_1:dim_2` `dim_1:dim_3`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -0.775 0.214 0.111 -0.166 -0.0857
#> 2 1 1.25 -0.0636 1.40 -0.0794 1.75
#> 3 1 1.07 -0.361 0.976 -0.384 1.04
#> 4 1 2.08 0.381 0.593 0.793 1.24
#> 5 1 -0.197 0.382 -0.257 -0.0753 0.0506
#> 6 1 0.266 -1.82 0.00411 -0.485 0.00109
#> 7 1 3.09 2.57 -0.612 7.96 -1.89
#> 8 1 2.03 0.247 0.112 0.501 0.226
#> 9 1 -0.397 0.204 1.55 -0.0810 -0.614
#> 10 1 0.597 0.335 0.533 0.200 0.319
#> # … with 90 more rows, and 1 more variable: `dim_2:dim_3` <dbl>
model_matrix(data, ~ .^3)
#> # A tibble: 100 x 8
#> `(Intercept)` dim_1 dim_2 dim_3 `dim_1:dim_2` `dim_1:dim_3`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -0.775 0.214 0.111 -0.166 -0.0857
#> 2 1 1.25 -0.0636 1.40 -0.0794 1.75
#> 3 1 1.07 -0.361 0.976 -0.384 1.04
#> 4 1 2.08 0.381 0.593 0.793 1.24
#> 5 1 -0.197 0.382 -0.257 -0.0753 0.0506
#> 6 1 0.266 -1.82 0.00411 -0.485 0.00109
#> 7 1 3.09 2.57 -0.612 7.96 -1.89
#> 8 1 2.03 0.247 0.112 0.501 0.226
#> 9 1 -0.397 0.204 1.55 -0.0810 -0.614
#> 10 1 0.597 0.335 0.533 0.200 0.319
#> # … with 90 more rows, and 2 more variables: `dim_2:dim_3` <dbl>,
#> # `dim_1:dim_2:dim_3` <dbl>
model_matrix(data, ~.^ndim)
#> Error in terms.formula(object, data = data): invalid power in formula
由 reprex package (v0.2.1)
于 2019-02-15 创建
您可以在 model_matrix
中将 as.formula
与 paste
结合使用:
model_matrix(data, as.formula(paste0("~ .^", ndim)))
我正在模拟具有波动数量变量的数据。作为这种情况的一部分,我需要计算一个包含所有可能组合的模型矩阵。有关示例,请参见以下 reprex。我可以通过将公式指定为 ~ .*.
来获得所有的二次交互。但是,这个特定的数据集有 3 个变量 (ndim <- 3
)。通过将公式指定为 ~ .^3
,我可以获得所有双向和三向交互。问题是我可能需要计算 4 个以上的变量,所以我希望能够对此进行概括。我已尝试将公式指定为 ~ .^ndim
,但这会引发错误。
有没有办法用变量定义公式中的幂?
library(tidyverse)
library(mvtnorm)
library(modelr)
ndim <- 3
data <- rmvnorm(100, mean = rep(0, ndim)) %>%
as_tibble(.name_repair = ~ paste0("dim_", seq_len(ndim)))
model_matrix(data, ~ .*.)
#> # A tibble: 100 x 7
#> `(Intercept)` dim_1 dim_2 dim_3 `dim_1:dim_2` `dim_1:dim_3`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -0.775 0.214 0.111 -0.166 -0.0857
#> 2 1 1.25 -0.0636 1.40 -0.0794 1.75
#> 3 1 1.07 -0.361 0.976 -0.384 1.04
#> 4 1 2.08 0.381 0.593 0.793 1.24
#> 5 1 -0.197 0.382 -0.257 -0.0753 0.0506
#> 6 1 0.266 -1.82 0.00411 -0.485 0.00109
#> 7 1 3.09 2.57 -0.612 7.96 -1.89
#> 8 1 2.03 0.247 0.112 0.501 0.226
#> 9 1 -0.397 0.204 1.55 -0.0810 -0.614
#> 10 1 0.597 0.335 0.533 0.200 0.319
#> # … with 90 more rows, and 1 more variable: `dim_2:dim_3` <dbl>
model_matrix(data, ~ .^3)
#> # A tibble: 100 x 8
#> `(Intercept)` dim_1 dim_2 dim_3 `dim_1:dim_2` `dim_1:dim_3`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -0.775 0.214 0.111 -0.166 -0.0857
#> 2 1 1.25 -0.0636 1.40 -0.0794 1.75
#> 3 1 1.07 -0.361 0.976 -0.384 1.04
#> 4 1 2.08 0.381 0.593 0.793 1.24
#> 5 1 -0.197 0.382 -0.257 -0.0753 0.0506
#> 6 1 0.266 -1.82 0.00411 -0.485 0.00109
#> 7 1 3.09 2.57 -0.612 7.96 -1.89
#> 8 1 2.03 0.247 0.112 0.501 0.226
#> 9 1 -0.397 0.204 1.55 -0.0810 -0.614
#> 10 1 0.597 0.335 0.533 0.200 0.319
#> # … with 90 more rows, and 2 more variables: `dim_2:dim_3` <dbl>,
#> # `dim_1:dim_2:dim_3` <dbl>
model_matrix(data, ~.^ndim)
#> Error in terms.formula(object, data = data): invalid power in formula
由 reprex package (v0.2.1)
于 2019-02-15 创建您可以在 model_matrix
中将 as.formula
与 paste
结合使用:
model_matrix(data, as.formula(paste0("~ .^", ndim)))