如何在 scikit 学习管道中实现 RandomUnderSampler?
How to implement RandomUnderSampler in a scikit learn pipline?
我有一个 scikit 学习管道来缩放数字特征和编码分类特征。在我尝试从 imblearn 实现 RandomUnderSampler 之前,它工作正常。我的目标是实施欠采样器步骤,因为我的数据集非常不平衡 1:1000.
我确保使用 imblearn 的 Pipeline 方法而不是 sklearn。下面是我试过的代码。
代码数据在没有欠采样器方法的情况下工作(使用 sklearn 管道)。
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from imblearn.pipeline import make_pipeline as make_pipeline_imb
from imblearn.pipeline import Pipeline as Pipeline_imb
from sklearn.base import BaseEstimator, TransformerMixin
class TypeSelector(BaseEstimator, TransformerMixin):
def __init__(self, dtype):
self.dtype = dtype
def fit(self, X, y=None):
return self
def transform(self, X):
assert isinstance(X, pd.DataFrame)
return X.select_dtypes(include=[self.dtype])
transformer = Pipeline([
# Union numeric, categoricals and boolean
('features', FeatureUnion(n_jobs=1, transformer_list=[
# Select bolean features
('boolean', Pipeline([
('selector', TypeSelector('bool')),
])),
# Select and scale numericals
('numericals', Pipeline([
('selector', TypeSelector(np.number)),
('scaler', StandardScaler()),
])),
# Select and encode categoricals
('categoricals', Pipeline([
('selector', TypeSelector('category')),
('encoder', OneHotEncoder(handle_unknown='ignore')),
]))
])),
])
pipe = Pipeline([('prep', transformer),
('clf', RandomForestClassifier(n_estimators=500, class_weight='balanced'))
])
无法使用欠采样器方法(使用 imblearn 管道)的代码。
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from imblearn.pipeline import make_pipeline as make_pipeline_imb
from imblearn.pipeline import Pipeline as Pipeline_imb
from sklearn.base import BaseEstimator, TransformerMixin
class TypeSelector(BaseEstimator, TransformerMixin):
def __init__(self, dtype):
self.dtype = dtype
def fit(self, X, y=None):
return self
def transform(self, X):
assert isinstance(X, pd.DataFrame)
return X.select_dtypes(include=[self.dtype])
transformer = Pipeline_imb([
# Union numeric, categoricals and boolean
('features', FeatureUnion(n_jobs=1, transformer_list=[
# Select bolean features
('boolean', Pipeline_imb([
('selector', TypeSelector('bool')),
])),
# Select and scale numericals
('numericals', Pipeline_imb([
('selector', TypeSelector(np.number)),
('scaler', StandardScaler()),
])),
# Select and encode categoricals
('categoricals', Pipeline_imb([
('selector', TypeSelector('category')),
('encoder', OneHotEncoder(handle_unknown='ignore')),
]))
])),
])
pipe = Pipeline_imb([
('sampler', RandomUnderSampler(0.1)),
('prep', transformer),
('clf', RandomForestClassifier(n_estimators=500, class_weight='balanced'))
])
这是我得到的错误:
/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py in __init__(self, steps, memory, verbose)
133 def __init__(self, steps, memory=None, verbose=False):
134 self.steps = steps
--> 135 self._validate_steps()
136 self.memory = memory
137 self.verbose = verbose
/usr/local/lib/python3.6/dist-packages/imblearn/pipeline.py in _validate_steps(self)
144 if isinstance(t, pipeline.Pipeline):
145 raise TypeError(
--> 146 "All intermediate steps of the chain should not be"
147 " Pipelines")
148
TypeError: All intermediate steps of the chain should not be Pipelines
如果您在文件 imblearn/pipeline.py
here 中探索 imblean 的代码,在函数 _validate_steps
下,他们将检查 transformers
中的每个项目是否有一个转换器是否是 scikit 管道的实例 (isinstance(t, pipeline.Pipeline)
).
根据您的代码,transformers
是
RandomUnderSampler
transformer
和 class Pipeline_imb
继承了 scikit 的管道,而在代码中使用 Pipeline_imb
是多余的。
话虽如此,我会像下面这样调整你的代码
transformer = FeatureUnion(n_jobs=1, transformer_list=[
# Select bolean features
('selector1', TypeSelector('bool'),
# Select and scale numericals
('selector2', TypeSelector(np.number)),
('scaler', StandardScaler()),
# Select and encode categoricals
('selector3', TypeSelector('category')),
('encoder', OneHotEncoder(handle_unknown='ignore'))
])
pipe = Pipeline_imb([
('sampler', RandomUnderSampler(0.1)),
('prep', transformer),
('clf', RandomForestClassifier(n_estimators=500, class_weight='balanced'))
])
我有一个 scikit 学习管道来缩放数字特征和编码分类特征。在我尝试从 imblearn 实现 RandomUnderSampler 之前,它工作正常。我的目标是实施欠采样器步骤,因为我的数据集非常不平衡 1:1000.
我确保使用 imblearn 的 Pipeline 方法而不是 sklearn。下面是我试过的代码。
代码数据在没有欠采样器方法的情况下工作(使用 sklearn 管道)。
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from imblearn.pipeline import make_pipeline as make_pipeline_imb
from imblearn.pipeline import Pipeline as Pipeline_imb
from sklearn.base import BaseEstimator, TransformerMixin
class TypeSelector(BaseEstimator, TransformerMixin):
def __init__(self, dtype):
self.dtype = dtype
def fit(self, X, y=None):
return self
def transform(self, X):
assert isinstance(X, pd.DataFrame)
return X.select_dtypes(include=[self.dtype])
transformer = Pipeline([
# Union numeric, categoricals and boolean
('features', FeatureUnion(n_jobs=1, transformer_list=[
# Select bolean features
('boolean', Pipeline([
('selector', TypeSelector('bool')),
])),
# Select and scale numericals
('numericals', Pipeline([
('selector', TypeSelector(np.number)),
('scaler', StandardScaler()),
])),
# Select and encode categoricals
('categoricals', Pipeline([
('selector', TypeSelector('category')),
('encoder', OneHotEncoder(handle_unknown='ignore')),
]))
])),
])
pipe = Pipeline([('prep', transformer),
('clf', RandomForestClassifier(n_estimators=500, class_weight='balanced'))
])
无法使用欠采样器方法(使用 imblearn 管道)的代码。
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from imblearn.pipeline import make_pipeline as make_pipeline_imb
from imblearn.pipeline import Pipeline as Pipeline_imb
from sklearn.base import BaseEstimator, TransformerMixin
class TypeSelector(BaseEstimator, TransformerMixin):
def __init__(self, dtype):
self.dtype = dtype
def fit(self, X, y=None):
return self
def transform(self, X):
assert isinstance(X, pd.DataFrame)
return X.select_dtypes(include=[self.dtype])
transformer = Pipeline_imb([
# Union numeric, categoricals and boolean
('features', FeatureUnion(n_jobs=1, transformer_list=[
# Select bolean features
('boolean', Pipeline_imb([
('selector', TypeSelector('bool')),
])),
# Select and scale numericals
('numericals', Pipeline_imb([
('selector', TypeSelector(np.number)),
('scaler', StandardScaler()),
])),
# Select and encode categoricals
('categoricals', Pipeline_imb([
('selector', TypeSelector('category')),
('encoder', OneHotEncoder(handle_unknown='ignore')),
]))
])),
])
pipe = Pipeline_imb([
('sampler', RandomUnderSampler(0.1)),
('prep', transformer),
('clf', RandomForestClassifier(n_estimators=500, class_weight='balanced'))
])
这是我得到的错误:
/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py in __init__(self, steps, memory, verbose)
133 def __init__(self, steps, memory=None, verbose=False):
134 self.steps = steps
--> 135 self._validate_steps()
136 self.memory = memory
137 self.verbose = verbose
/usr/local/lib/python3.6/dist-packages/imblearn/pipeline.py in _validate_steps(self)
144 if isinstance(t, pipeline.Pipeline):
145 raise TypeError(
--> 146 "All intermediate steps of the chain should not be"
147 " Pipelines")
148
TypeError: All intermediate steps of the chain should not be Pipelines
如果您在文件 imblearn/pipeline.py
here 中探索 imblean 的代码,在函数 _validate_steps
下,他们将检查 transformers
中的每个项目是否有一个转换器是否是 scikit 管道的实例 (isinstance(t, pipeline.Pipeline)
).
根据您的代码,transformers
是
RandomUnderSampler
transformer
和 class Pipeline_imb
继承了 scikit 的管道,而在代码中使用 Pipeline_imb
是多余的。
话虽如此,我会像下面这样调整你的代码
transformer = FeatureUnion(n_jobs=1, transformer_list=[
# Select bolean features
('selector1', TypeSelector('bool'),
# Select and scale numericals
('selector2', TypeSelector(np.number)),
('scaler', StandardScaler()),
# Select and encode categoricals
('selector3', TypeSelector('category')),
('encoder', OneHotEncoder(handle_unknown='ignore'))
])
pipe = Pipeline_imb([
('sampler', RandomUnderSampler(0.1)),
('prep', transformer),
('clf', RandomForestClassifier(n_estimators=500, class_weight='balanced'))
])