webgl glsl shader问题,同样的fragment shader代码在windows和macos上性能完全不同
webgl glsl shader problem ,the same fragment shader code on windows and macos has a completely different performance
刚开始学webgl GLSL.I最近遇到一个奇怪的问题差点要了我的命。
我写了一个简单的立方体纹理渲染代码,我在片段着色器中使用法向量来添加一些特殊效果。这段代码在 Windows 上基本上和我预期的一样工作,但是它在 macos 和 ios 上显示黑屏,然后我测试了 Android 系统,它和在上一样正常Windows。我猜windows平台和macos平台是有区别的。有些秘密我不知道。有没有好心人愿意帮帮我,谢谢!
这是顶点着色器:
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
这是片段着色器:
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
这里是 windows 节目:
windos
这是 macos 显示:
macos
11/18/2019更新:感谢@gman的友情建议,我更新了代码
var cubeRotation = 0.0;
main();
//
// Start here
//
function main() {
const canvas = document.querySelector('#glcanvas');
const gl = canvas.getContext('webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine may not support it.');
return;
}
const vsSource = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
`;
// Fragment shader program
const fsSource = `
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
`;
// Initialize a shader program; this is where all the lighting
// for the vertices and so forth is established.
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
// Collect all the info needed to use the shader program.
// Look up which attributes our shader program is using
// for aVertexPosition, aTextureCoord and also
// look up uniform locations.
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
textureCoord: gl.getAttribLocation(shaderProgram, 'aTextureCoord'),
normal: gl.getAttribLocation(shaderProgram, 'aNormal')
},
uniformLocations: {
projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
uSampler: gl.getUniformLocation(shaderProgram, 'uSampler'),
},
};
// Here's where we call the routine that builds all the
// objects we'll be drawing.
const buffers = initBuffers(gl);
const texture = loadTexture(gl, 'https://i.stack.imgur.com/jHbv0.png');
var then = 0;
// Draw the scene repeatedly
function render(now) {
now *= 0.001; // convert to seconds
const deltaTime = now - then;
then = now;
drawScene(gl, programInfo, buffers, texture, deltaTime);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
//
// initBuffers
//
// Initialize the buffers we'll need. For this demo, we just
// have one object -- a simple three-dimensional cube.
//
function initBuffers(gl) {
// Create a buffer for the cube's vertex positions.
const positionBuffer = gl.createBuffer();
// Select the positionBuffer as the one to apply buffer
// operations to from here out.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Now create an array of positions for the cube.
const positions = [
// Front face
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, 1.0,
// Back face
-1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, -1.0,
1.0, -1.0, -1.0,
// Top face
-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, -1.0,
// Bottom face
-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, 1.0,
// Right face
1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
1.0, 1.0, 1.0,
1.0, -1.0, 1.0,
// Left face
-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
-1.0, 1.0, 1.0,
-1.0, 1.0, -1.0,
];
// Now pass the list of positions into WebGL to build the
// shape. We do this by creating a Float32Array from the
// JavaScript array, then use it to fill the current buffer.
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
// Now set up the texture coordinates for the faces.
const textureCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer);
const textureCoordinates = [
// Front
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Back
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Top
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Bottom
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Right
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Left
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordinates),
gl.STATIC_DRAW);
// set up normals
const normalsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, normalsBuffer);
const normals = [
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normals),
gl.STATIC_DRAW);
// Build the element array buffer; this specifies the indices
// into the vertex arrays for each face's vertices.
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
// This array defines each face as two triangles, using the
// indices into the vertex array to specify each triangle's
// position.
const indices = [
0, 1, 2, 0, 2, 3, // front
4, 5, 6, 4, 6, 7, // back
8, 9, 10, 8, 10, 11, // top
12, 13, 14, 12, 14, 15, // bottom
16, 17, 18, 16, 18, 19, // right
20, 21, 22, 20, 22, 23, // left
];
// Now send the element array to GL
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,
new Uint16Array(indices), gl.STATIC_DRAW);
return {
position: positionBuffer,
textureCoord: textureCoordBuffer,
normals: normalsBuffer,
indices: indexBuffer,
};
}
//
// Initialize a texture and load an image.
// When the image finished loading copy it into the texture.
//
function loadTexture(gl, url) {
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
// Because images have to be download over the internet
// they might take a moment until they are ready.
// Until then put a single pixel in the texture so we can
// use it immediately. When the image has finished downloading
// we'll update the texture with the contents of the image.
const level = 0;
const internalFormat = gl.RGBA;
const width = 1;
const height = 1;
const border = 0;
const srcFormat = gl.RGBA;
const srcType = gl.UNSIGNED_BYTE;
const pixel = new Uint8Array([0, 0, 255, 255]); // opaque blue
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
width, height, border, srcFormat, srcType,
pixel);
const image = new Image();
image.crossOrigin = '';
image.onload = function () {
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
srcFormat, srcType, image);
// WebGL1 has different requirements for power of 2 images
// vs non power of 2 images so check if the image is a
// power of 2 in both dimensions.
if (isPowerOf2(image.width) && isPowerOf2(image.height)) {
// Yes, it's a power of 2. Generate mips.
gl.generateMipmap(gl.TEXTURE_2D);
} else {
// No, it's not a power of 2. Turn of mips and set
// wrapping to clamp to edge
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
}
};
image.src = url;
return texture;
}
function isPowerOf2(value) {
return (value & (value - 1)) == 0;
}
//
// Draw the scene.
//
function drawScene(gl, programInfo, buffers, texture, deltaTime) {
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Create a perspective matrix, a special matrix that is
// used to simulate the distortion of perspective in a camera.
// Our field of view is 45 degrees, with a width/height
// ratio that matches the display size of the canvas
// and we only want to see objects between 0.1 units
// and 100 units away from the camera.
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
// note: glmatrix.js always has the first argument
// as the destination to receive the result.
mat4.perspective(projectionMatrix,
fieldOfView,
aspect,
zNear,
zFar);
// Set the drawing position to the "identity" point, which is
// the center of the scene.
const modelViewMatrix = mat4.create();
// Now move the drawing position a bit to where we want to
// start drawing the square.
mat4.translate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6.0]); // amount to translate
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation, // amount to rotate in radians
[0, 0, 1]); // axis to rotate around (Z)
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation * .7,// amount to rotate in radians
[0, 1, 0]); // axis to rotate around (X)
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute
{
const numComponents = 3;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL how to pull out the texture coordinates from
// the texture coordinate buffer into the textureCoord attribute.
{
const numComponents = 2;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord);
gl.vertexAttribPointer(
programInfo.attribLocations.textureCoord,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.textureCoord);
}
// normal
{
const numComponents = 3;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.normals);
gl.vertexAttribPointer(
programInfo.attribLocations.normal,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.normal);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
// Specify the texture to map onto the faces.
// Tell WebGL we want to affect texture unit 0
gl.activeTexture(gl.TEXTURE0);
// Bind the texture to texture unit 0
gl.bindTexture(gl.TEXTURE_2D, texture);
// Tell the shader we bound the texture to texture unit 0
gl.uniform1i(programInfo.uniformLocations.uSampler, 0);
{
const vertexCount = 36;
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
// Update the rotation for the next draw
cubeRotation += deltaTime;
}
//
// Initialize a shader program, so WebGL knows how to draw our data
//
function initShaderProgram(gl, vsSource, fsSource) {
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
//
// creates a shader of the given type, uploads the source and
// compiles it.
//
function loadShader(gl, type, source) {
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
canvas {
border: 2px solid black;
background-color: black;
}
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>WebGL Demo</title>
<script src="https://mdn.github.io/webgl-examples/tutorial/gl-matrix.js"></script>
</head>
<body>
<canvas id="glcanvas" width="640" height="480"></canvas>
</body>
</html>
解决方法:
当前的法向量解决了我的问题:
const normals = [
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
];
您需要 post 更多代码!
想到的唯一可能性是,如果您猜测属性位置而不是查找它们,那么也许您在 Windows 上的 GPU 上猜对了,但该猜测在 MacOS 或iOS.
您无法猜测属性位置。您必须查找或分配它们。
我自己尝试了你的着色器,它们工作得很好。
const m4 = twgl.m4;
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
`;
const fs = `
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
`;
// compile shaders, link program, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const arrays = twgl.primitives.createCubeVertices(1);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData
// for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
aVertexPosition: arrays.position,
aTextureCoord: arrays.texcoord,
aNormal: arrays.normal,
indices: arrays.indices,
});
// creates a 2x2 texture
const tex = twgl.createTexture(gl, {
src: new Uint8Array([
255, 128, 128, 255,
128, 255, 128, 255,
128, 128, 255, 255,
255, 128, 255, 255,
]),
minMag: gl.NEAREST,
});
function render(time) {
time *= 0.001;
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
// for each attribute
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
const uProjectionMatrix = m4.perspective(
Math.PI * 0.25,
gl.canvas.clientWidth / gl.canvas.clientHeight,
0.1,
10);
const uModelViewMatrix = m4.identity();
m4.translate(uModelViewMatrix, [0, 0, -2], uModelViewMatrix);
m4.rotateX(uModelViewMatrix, time, uModelViewMatrix);
m4.rotateY(uModelViewMatrix, time, uModelViewMatrix);
// calls gl.activeTexture, gl.bindTexture, gl.uniformXXX
twgl.setUniforms(programInfo, {
uProjectionMatrix,
uModelViewMatrix,
uSampler: tex,
});
// calls either gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
canvas { border: 1px solid black; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
注意:我使用了 twgl,因为你的问题不是问如何做 webgl(这是一个太大的问题)。您的问题实际上 "why don't my shaders work on MacOS/iOS" 并且上面的代码证明它们工作得很好。
建议你试试these tutorials
const m4 = twgl.m4;
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
`;
const fs = `
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
`;
// compile shaders, link program
const program = twgl.createProgram(gl, [vs, fs]);
const aVertexPositionLoc = gl.getAttribLocation(program, 'aVertexPosition');
const aTextureCoordLoc = gl.getAttribLocation(program, 'aTextureCoord');
const aNormalLoc = gl.getAttribLocation(program, 'aNormal');
const uProjectionMatrixLoc = gl.getUniformLocation(program, 'uProjectionMatrix');
const uModelViewMatrixLoc = gl.getUniformLocation(program, 'uModelViewMatrix');
const uSamplerLoc = gl.getUniformLocation(program, 'uSampler');
const arrays = twgl.primitives.createCubeVertices(1);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData
// for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
aVertexPosition: arrays.position,
aTextureCoord: arrays.texcoord,
aNormal: arrays.normal,
indices: arrays.indices,
});
// creates a 2x2 texture
const tex = twgl.createTexture(gl, {
src: new Uint8Array([
255, 128, 128, 255,
128, 255, 128, 255,
128, 128, 255, 255,
255, 128, 255, 255,
]),
minMag: gl.NEAREST,
});
function render(time) {
time *= 0.001;
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.useProgram(program);
gl.enableVertexAttribArray(aVertexPositionLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.aVertexPosition.buffer);
gl.vertexAttribPointer(aVertexPositionLoc, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(aTextureCoordLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.aTextureCoord.buffer);
gl.vertexAttribPointer(aTextureCoordLoc, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(aNormalLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.aNormal.buffer);
gl.vertexAttribPointer(aNormalLoc, 3, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufferInfo.indices);
const uProjectionMatrix = m4.perspective(
Math.PI * 0.25,
gl.canvas.clientWidth / gl.canvas.clientHeight,
0.1,
10);
const uModelViewMatrix = m4.identity();
m4.translate(uModelViewMatrix, [0, 0, -2], uModelViewMatrix);
m4.rotateX(uModelViewMatrix, time, uModelViewMatrix);
m4.rotateY(uModelViewMatrix, time, uModelViewMatrix);
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.uniform1i(uSamplerLoc, 0);
gl.uniformMatrix4fv(uProjectionMatrixLoc, false, uProjectionMatrix);
gl.uniformMatrix4fv(uModelViewMatrixLoc, false, uModelViewMatrix);
gl.drawElements(
gl.TRIANGLES,
bufferInfo.numElements,
bufferInfo.elementType,
0);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
canvas { border: 1px solid black; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
刚开始学webgl GLSL.I最近遇到一个奇怪的问题差点要了我的命。 我写了一个简单的立方体纹理渲染代码,我在片段着色器中使用法向量来添加一些特殊效果。这段代码在 Windows 上基本上和我预期的一样工作,但是它在 macos 和 ios 上显示黑屏,然后我测试了 Android 系统,它和在上一样正常Windows。我猜windows平台和macos平台是有区别的。有些秘密我不知道。有没有好心人愿意帮帮我,谢谢! 这是顶点着色器:
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
这是片段着色器:
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
这里是 windows 节目: windos
这是 macos 显示: macos
11/18/2019更新:感谢@gman的友情建议,我更新了代码
var cubeRotation = 0.0;
main();
//
// Start here
//
function main() {
const canvas = document.querySelector('#glcanvas');
const gl = canvas.getContext('webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine may not support it.');
return;
}
const vsSource = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
`;
// Fragment shader program
const fsSource = `
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
`;
// Initialize a shader program; this is where all the lighting
// for the vertices and so forth is established.
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
// Collect all the info needed to use the shader program.
// Look up which attributes our shader program is using
// for aVertexPosition, aTextureCoord and also
// look up uniform locations.
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
textureCoord: gl.getAttribLocation(shaderProgram, 'aTextureCoord'),
normal: gl.getAttribLocation(shaderProgram, 'aNormal')
},
uniformLocations: {
projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
uSampler: gl.getUniformLocation(shaderProgram, 'uSampler'),
},
};
// Here's where we call the routine that builds all the
// objects we'll be drawing.
const buffers = initBuffers(gl);
const texture = loadTexture(gl, 'https://i.stack.imgur.com/jHbv0.png');
var then = 0;
// Draw the scene repeatedly
function render(now) {
now *= 0.001; // convert to seconds
const deltaTime = now - then;
then = now;
drawScene(gl, programInfo, buffers, texture, deltaTime);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
//
// initBuffers
//
// Initialize the buffers we'll need. For this demo, we just
// have one object -- a simple three-dimensional cube.
//
function initBuffers(gl) {
// Create a buffer for the cube's vertex positions.
const positionBuffer = gl.createBuffer();
// Select the positionBuffer as the one to apply buffer
// operations to from here out.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Now create an array of positions for the cube.
const positions = [
// Front face
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, 1.0,
// Back face
-1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, -1.0,
1.0, -1.0, -1.0,
// Top face
-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, -1.0,
// Bottom face
-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, 1.0,
// Right face
1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
1.0, 1.0, 1.0,
1.0, -1.0, 1.0,
// Left face
-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
-1.0, 1.0, 1.0,
-1.0, 1.0, -1.0,
];
// Now pass the list of positions into WebGL to build the
// shape. We do this by creating a Float32Array from the
// JavaScript array, then use it to fill the current buffer.
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
// Now set up the texture coordinates for the faces.
const textureCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer);
const textureCoordinates = [
// Front
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Back
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Top
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Bottom
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Right
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
// Left
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordinates),
gl.STATIC_DRAW);
// set up normals
const normalsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, normalsBuffer);
const normals = [
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normals),
gl.STATIC_DRAW);
// Build the element array buffer; this specifies the indices
// into the vertex arrays for each face's vertices.
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
// This array defines each face as two triangles, using the
// indices into the vertex array to specify each triangle's
// position.
const indices = [
0, 1, 2, 0, 2, 3, // front
4, 5, 6, 4, 6, 7, // back
8, 9, 10, 8, 10, 11, // top
12, 13, 14, 12, 14, 15, // bottom
16, 17, 18, 16, 18, 19, // right
20, 21, 22, 20, 22, 23, // left
];
// Now send the element array to GL
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,
new Uint16Array(indices), gl.STATIC_DRAW);
return {
position: positionBuffer,
textureCoord: textureCoordBuffer,
normals: normalsBuffer,
indices: indexBuffer,
};
}
//
// Initialize a texture and load an image.
// When the image finished loading copy it into the texture.
//
function loadTexture(gl, url) {
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
// Because images have to be download over the internet
// they might take a moment until they are ready.
// Until then put a single pixel in the texture so we can
// use it immediately. When the image has finished downloading
// we'll update the texture with the contents of the image.
const level = 0;
const internalFormat = gl.RGBA;
const width = 1;
const height = 1;
const border = 0;
const srcFormat = gl.RGBA;
const srcType = gl.UNSIGNED_BYTE;
const pixel = new Uint8Array([0, 0, 255, 255]); // opaque blue
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
width, height, border, srcFormat, srcType,
pixel);
const image = new Image();
image.crossOrigin = '';
image.onload = function () {
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
srcFormat, srcType, image);
// WebGL1 has different requirements for power of 2 images
// vs non power of 2 images so check if the image is a
// power of 2 in both dimensions.
if (isPowerOf2(image.width) && isPowerOf2(image.height)) {
// Yes, it's a power of 2. Generate mips.
gl.generateMipmap(gl.TEXTURE_2D);
} else {
// No, it's not a power of 2. Turn of mips and set
// wrapping to clamp to edge
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
}
};
image.src = url;
return texture;
}
function isPowerOf2(value) {
return (value & (value - 1)) == 0;
}
//
// Draw the scene.
//
function drawScene(gl, programInfo, buffers, texture, deltaTime) {
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Create a perspective matrix, a special matrix that is
// used to simulate the distortion of perspective in a camera.
// Our field of view is 45 degrees, with a width/height
// ratio that matches the display size of the canvas
// and we only want to see objects between 0.1 units
// and 100 units away from the camera.
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
// note: glmatrix.js always has the first argument
// as the destination to receive the result.
mat4.perspective(projectionMatrix,
fieldOfView,
aspect,
zNear,
zFar);
// Set the drawing position to the "identity" point, which is
// the center of the scene.
const modelViewMatrix = mat4.create();
// Now move the drawing position a bit to where we want to
// start drawing the square.
mat4.translate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6.0]); // amount to translate
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation, // amount to rotate in radians
[0, 0, 1]); // axis to rotate around (Z)
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation * .7,// amount to rotate in radians
[0, 1, 0]); // axis to rotate around (X)
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute
{
const numComponents = 3;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL how to pull out the texture coordinates from
// the texture coordinate buffer into the textureCoord attribute.
{
const numComponents = 2;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord);
gl.vertexAttribPointer(
programInfo.attribLocations.textureCoord,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.textureCoord);
}
// normal
{
const numComponents = 3;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.normals);
gl.vertexAttribPointer(
programInfo.attribLocations.normal,
numComponents,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.normal);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
// Specify the texture to map onto the faces.
// Tell WebGL we want to affect texture unit 0
gl.activeTexture(gl.TEXTURE0);
// Bind the texture to texture unit 0
gl.bindTexture(gl.TEXTURE_2D, texture);
// Tell the shader we bound the texture to texture unit 0
gl.uniform1i(programInfo.uniformLocations.uSampler, 0);
{
const vertexCount = 36;
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
// Update the rotation for the next draw
cubeRotation += deltaTime;
}
//
// Initialize a shader program, so WebGL knows how to draw our data
//
function initShaderProgram(gl, vsSource, fsSource) {
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
//
// creates a shader of the given type, uploads the source and
// compiles it.
//
function loadShader(gl, type, source) {
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
canvas {
border: 2px solid black;
background-color: black;
}
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>WebGL Demo</title>
<script src="https://mdn.github.io/webgl-examples/tutorial/gl-matrix.js"></script>
</head>
<body>
<canvas id="glcanvas" width="640" height="480"></canvas>
</body>
</html>
解决方法: 当前的法向量解决了我的问题:
const normals = [
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 0.0, -1.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
0.0, -1.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
-1.0, 0.0, 0.0,
];
您需要 post 更多代码!
想到的唯一可能性是,如果您猜测属性位置而不是查找它们,那么也许您在 Windows 上的 GPU 上猜对了,但该猜测在 MacOS 或iOS.
您无法猜测属性位置。您必须查找或分配它们。
我自己尝试了你的着色器,它们工作得很好。
const m4 = twgl.m4;
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
`;
const fs = `
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
`;
// compile shaders, link program, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const arrays = twgl.primitives.createCubeVertices(1);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData
// for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
aVertexPosition: arrays.position,
aTextureCoord: arrays.texcoord,
aNormal: arrays.normal,
indices: arrays.indices,
});
// creates a 2x2 texture
const tex = twgl.createTexture(gl, {
src: new Uint8Array([
255, 128, 128, 255,
128, 255, 128, 255,
128, 128, 255, 255,
255, 128, 255, 255,
]),
minMag: gl.NEAREST,
});
function render(time) {
time *= 0.001;
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
// for each attribute
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
const uProjectionMatrix = m4.perspective(
Math.PI * 0.25,
gl.canvas.clientWidth / gl.canvas.clientHeight,
0.1,
10);
const uModelViewMatrix = m4.identity();
m4.translate(uModelViewMatrix, [0, 0, -2], uModelViewMatrix);
m4.rotateX(uModelViewMatrix, time, uModelViewMatrix);
m4.rotateY(uModelViewMatrix, time, uModelViewMatrix);
// calls gl.activeTexture, gl.bindTexture, gl.uniformXXX
twgl.setUniforms(programInfo, {
uProjectionMatrix,
uModelViewMatrix,
uSampler: tex,
});
// calls either gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
canvas { border: 1px solid black; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
注意:我使用了 twgl,因为你的问题不是问如何做 webgl(这是一个太大的问题)。您的问题实际上 "why don't my shaders work on MacOS/iOS" 并且上面的代码证明它们工作得很好。
建议你试试these tutorials
const m4 = twgl.m4;
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
vNormal = aNormal;
}
`;
const fs = `
precision mediump float;
uniform sampler2D uSampler;
varying vec3 vNormal;
varying vec2 vTextureCoord;
void main(void) {
vec4 an = vec4(vNormal, 1.0);
gl_FragColor = an * texture2D(uSampler, vTextureCoord);
}
`;
// compile shaders, link program
const program = twgl.createProgram(gl, [vs, fs]);
const aVertexPositionLoc = gl.getAttribLocation(program, 'aVertexPosition');
const aTextureCoordLoc = gl.getAttribLocation(program, 'aTextureCoord');
const aNormalLoc = gl.getAttribLocation(program, 'aNormal');
const uProjectionMatrixLoc = gl.getUniformLocation(program, 'uProjectionMatrix');
const uModelViewMatrixLoc = gl.getUniformLocation(program, 'uModelViewMatrix');
const uSamplerLoc = gl.getUniformLocation(program, 'uSampler');
const arrays = twgl.primitives.createCubeVertices(1);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData
// for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
aVertexPosition: arrays.position,
aTextureCoord: arrays.texcoord,
aNormal: arrays.normal,
indices: arrays.indices,
});
// creates a 2x2 texture
const tex = twgl.createTexture(gl, {
src: new Uint8Array([
255, 128, 128, 255,
128, 255, 128, 255,
128, 128, 255, 255,
255, 128, 255, 255,
]),
minMag: gl.NEAREST,
});
function render(time) {
time *= 0.001;
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.useProgram(program);
gl.enableVertexAttribArray(aVertexPositionLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.aVertexPosition.buffer);
gl.vertexAttribPointer(aVertexPositionLoc, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(aTextureCoordLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.aTextureCoord.buffer);
gl.vertexAttribPointer(aTextureCoordLoc, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(aNormalLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.aNormal.buffer);
gl.vertexAttribPointer(aNormalLoc, 3, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufferInfo.indices);
const uProjectionMatrix = m4.perspective(
Math.PI * 0.25,
gl.canvas.clientWidth / gl.canvas.clientHeight,
0.1,
10);
const uModelViewMatrix = m4.identity();
m4.translate(uModelViewMatrix, [0, 0, -2], uModelViewMatrix);
m4.rotateX(uModelViewMatrix, time, uModelViewMatrix);
m4.rotateY(uModelViewMatrix, time, uModelViewMatrix);
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.uniform1i(uSamplerLoc, 0);
gl.uniformMatrix4fv(uProjectionMatrixLoc, false, uProjectionMatrix);
gl.uniformMatrix4fv(uModelViewMatrixLoc, false, uModelViewMatrix);
gl.drawElements(
gl.TRIANGLES,
bufferInfo.numElements,
bufferInfo.elementType,
0);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
canvas { border: 1px solid black; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>