如何避免在 Keras ImageDataGenerator 的验证拆分中增加数据?
How to avoid augmenting data in validation split of Keras ImageDataGenerator?
我正在使用以下生成器:
datagen = ImageDataGenerator(
fill_mode='nearest',
cval=0,
rescale=1. / 255,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.5,
horizontal_flip=True,
vertical_flip=True,
validation_split = 0.5,
)
train_generator = datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="training",
batch_size=8,
seed=123,
shuffle=True,
class_mode="other",
target_size=(64,64))
STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size
valid_generator = datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="validation",
batch_size=8,
seed=123,
shuffle=True,
class_mode="raw",
target_size=(64, 64))
STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size
现在的问题是验证数据也在增加,我猜这不是你在训练时想要做的事情。我该如何避免这种情况?我没有两个用于训练和验证的目录。我想使用单个数据框来训练网络。有什么建议吗?
您可以通过对代码进行少量更改来解决此问题。您可以再添加一个名为 test_datagen 的 ImageDataGenerator 对象,在该对象中您将只传递 rescale 参数而不传递增强技术。因此,增强技术将在不同的对象中,因为它 datagen.You 还必须在将其传递给训练和测试数据生成器之前拆分训练和测试目录。
我给你一个TensorFLow的示例代码,你也可以参考this.
#For traning data
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
#For testing data
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
我朋友找到的解决方案是使用不同的生成器,但具有相同的验证拆分且没有随机播放。
datagen = ImageDataGenerator(
#featurewise_center=True,
#featurewise_std_normalization=True,
rescale=1. / 255,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.5,
horizontal_flip=True,
vertical_flip=True,
validation_split = 0.15,
)
valid_datagen=ImageDataGenerator(rescale=1./255,validation_split=0.15)
然后你可以将两个生成器定义为
train_generator = datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="training",
batch_size=64,
seed=123,
shuffle=False,
class_mode="raw",
target_size=(224,224))
STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size
valid_generator = valid_datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="validation",
batch_size=64,
seed=123,
shuffle=False,
class_mode="raw",
target_size=(224, 224))
STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size
您应该看到这个相关问题的答案:When using Data augmentation is it ok to validate only with the original images?
它说在加载验证数据时使用ImageDataGenerator和空参数,例如:
train_gen = ImageDataGenerator(aug_params).flow_from_directory(train_dir)
valid_gen = ImageDataGenerator().flow_from_directory(valid_dir)
model.fit_generator(train_gen, validation_data=valid_gen)
尝试将您的数据帧拆分为单独的数据帧。然后你可以为每个数据帧做一个单独的生成器。
我正在使用以下生成器:
datagen = ImageDataGenerator(
fill_mode='nearest',
cval=0,
rescale=1. / 255,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.5,
horizontal_flip=True,
vertical_flip=True,
validation_split = 0.5,
)
train_generator = datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="training",
batch_size=8,
seed=123,
shuffle=True,
class_mode="other",
target_size=(64,64))
STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size
valid_generator = datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="validation",
batch_size=8,
seed=123,
shuffle=True,
class_mode="raw",
target_size=(64, 64))
STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size
现在的问题是验证数据也在增加,我猜这不是你在训练时想要做的事情。我该如何避免这种情况?我没有两个用于训练和验证的目录。我想使用单个数据框来训练网络。有什么建议吗?
您可以通过对代码进行少量更改来解决此问题。您可以再添加一个名为 test_datagen 的 ImageDataGenerator 对象,在该对象中您将只传递 rescale 参数而不传递增强技术。因此,增强技术将在不同的对象中,因为它 datagen.You 还必须在将其传递给训练和测试数据生成器之前拆分训练和测试目录。 我给你一个TensorFLow的示例代码,你也可以参考this.
#For traning data
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
#For testing data
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
我朋友找到的解决方案是使用不同的生成器,但具有相同的验证拆分且没有随机播放。
datagen = ImageDataGenerator(
#featurewise_center=True,
#featurewise_std_normalization=True,
rescale=1. / 255,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.5,
horizontal_flip=True,
vertical_flip=True,
validation_split = 0.15,
)
valid_datagen=ImageDataGenerator(rescale=1./255,validation_split=0.15)
然后你可以将两个生成器定义为
train_generator = datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="training",
batch_size=64,
seed=123,
shuffle=False,
class_mode="raw",
target_size=(224,224))
STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size
valid_generator = valid_datagen.flow_from_dataframe(
dataframe=traindf,
directory=train_path,
x_col="id",
y_col=classes,
subset="validation",
batch_size=64,
seed=123,
shuffle=False,
class_mode="raw",
target_size=(224, 224))
STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size
您应该看到这个相关问题的答案:When using Data augmentation is it ok to validate only with the original images?
它说在加载验证数据时使用ImageDataGenerator和空参数,例如:
train_gen = ImageDataGenerator(aug_params).flow_from_directory(train_dir)
valid_gen = ImageDataGenerator().flow_from_directory(valid_dir)
model.fit_generator(train_gen, validation_data=valid_gen)
尝试将您的数据帧拆分为单独的数据帧。然后你可以为每个数据帧做一个单独的生成器。