自定义 ImageDataGenerator keras
Custom ImageDataGenerator keras
我一直在尝试实现 Keras 自定义图像数据生成器,以便我可以进行头发和显微镜图像增强。
这是数据生成器class:
class DataGenerator( Sequence ):
def __init__(self,image_paths,labels, augmentations, batch_size=32, image_dimension=(224,224,3), shuffle=False):
self.image_paths = image_paths
self.labels = labels
self.batch_size = batch_size
self.image_dimension = image_dimension
self.shuffle = shuffle
self.augment = augmentations
def __len__(self):
return int(np.ceil(len(self.image_paths) / self.batch_size ))
def _getitem__(self,index):
indexes = self.indexes[index*self.batch_size : (index+1)*self.batch_size]
batch_y = np.array([self.labels[k] for k in indexes])
batch_x = [cv2.cvtColor(cv2.imread(self.image_paths[k]), cv2.COLOR_RGB2BGR) for k in indexes]
return np.stack([
self.augment(image=x)["image"] for x in batch_x
], axis=0), np.array(batch_y)
下面的代码用于 albumentations 增强(只是尝试 albualbumentations 增强来测试数据生成器是否工作):
AUGMENTATIONS_TRAIN = Compose([
HorizontalFlip(p=0.5),
RandomContrast(limit=0.2, p=0.5),
RandomGamma(gamma_limit=(80, 120), p=0.5),
RandomBrightness(limit=0.2, p=0.5),
HueSaturationValue(hue_shift_limit=5, sat_shift_limit=20,
val_shift_limit=10, p=.9),
# CLAHE(p=1.0, clip_limit=2.0),
ShiftScaleRotate(
shift_limit=0.0625, scale_limit=0.1,
rotate_limit=15, border_mode=cv2.BORDER_REFLECT_101, p=0.8),
ToFloat(max_value=255)
])
AUGMENTATIONS_TEST = Compose([
# CLAHE(p=1.0, clip_limit=2.0),
ToFloat(max_value=255)
])
正在创建 DataGenerator 对象:
train_datagen = DataGenerator( train['images'],
train['target'],
augmentations=AUGMENTATIONS_TRAIN,
batch_size=32,
image_dimension=(224,224,3) )
val_datagen = DataGenerator( validation['images'],
validation['target'],
augmentations=AUGMENTATIONS_TEST,
batch_size=16,
image_dimension=(224,224,3) )`
当我出现 NonImplementedError
运行model.fit_generator(generator=train_datagen,steps_per_epoch=30,epochs = 30,validation_data=val_datagen,validation_steps=15)
我已经分享了我的内核 here 并且
我正在寻求 here 的帮助。
我也一直在寻找其他增强方式,它们都是一样的。
如果有人能告诉我为什么以及哪里出了问题,我将不胜感激?还有在 keras 中进行自定义图像增强的其他好方法吗?
你可以看看 imgaug 库。 albumentations 和 imgaug 几乎相同。写出操作顺序,然后直接放到Imagedatagenerator中preprocessing_function。我尝试使用 albumentations 库,但遇到了一些错误。
from imgaug import augmenters as iaa
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontally flip
# sometimes(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05), per_channel=0.5)),
iaa.OneOf([
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# iaa.Noop(),
iaa.GaussianBlur(sigma=(0.0, 1.0)),
# iaa.Noop(),
iaa.Affine(rotate=(-10, 10), translate_percent={"x": (-0.25, 0.25)}, mode='symmetric', cval=(0)),
# iaa.Noop(),
# iaa.PerspectiveTransform(scale=(0.04, 0.08)),
# # iaa.Noop(),
# iaa.PiecewiseAffine(scale=(0.05, 0.1), mode='edge', cval=(0)),
]),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)),
# More as you want ...
], random_order=True)
datagen = ImageDataGenerator(preprocessing_function=seq.augment_image)
有一些高级数据增强实践,例如剪切、随机擦除和混合。它们很容易在 Keras 中实现。对于 mixup,示例如下:
training_generator = MixupGenerator(trainX, trainY, batch_size=8, alpha=0.2, datagen=datagen)()
x, y = next(training_generator)
# To visualize the batch images
for i in range(9):
plt.subplot(330+1+i)
# batch = it.next()
img = x[i]
plt.imshow(img.reshape(224, 224, 3))
plt.savefig("mixup_batch.png")
H = model.fit_generator(
# datagen.flow(trainX, trainY, batch_size=args.batch_size),
training_generator,
steps_per_epoch=len(trainX) // args.batch_size,
validation_data=(valX, valY),
validation_steps=len(valX) // args.batch_size,
epochs=args.epochs,
# workers=4,
callbacks=[model_checkpoint, lr_reducer, stopping, lr_schedule],
)
我在这方面遇到的问题是,对于随机擦除,我们需要将其放入 ImageDataGenerator preprocessing_function 并且我们已经将 imgaug 增强放入其中。可能的替代方法是使用两个数据生成器。
我一直在尝试实现 Keras 自定义图像数据生成器,以便我可以进行头发和显微镜图像增强。
这是数据生成器class:
class DataGenerator( Sequence ):
def __init__(self,image_paths,labels, augmentations, batch_size=32, image_dimension=(224,224,3), shuffle=False):
self.image_paths = image_paths
self.labels = labels
self.batch_size = batch_size
self.image_dimension = image_dimension
self.shuffle = shuffle
self.augment = augmentations
def __len__(self):
return int(np.ceil(len(self.image_paths) / self.batch_size ))
def _getitem__(self,index):
indexes = self.indexes[index*self.batch_size : (index+1)*self.batch_size]
batch_y = np.array([self.labels[k] for k in indexes])
batch_x = [cv2.cvtColor(cv2.imread(self.image_paths[k]), cv2.COLOR_RGB2BGR) for k in indexes]
return np.stack([
self.augment(image=x)["image"] for x in batch_x
], axis=0), np.array(batch_y)
下面的代码用于 albumentations 增强(只是尝试 albualbumentations 增强来测试数据生成器是否工作):
AUGMENTATIONS_TRAIN = Compose([
HorizontalFlip(p=0.5),
RandomContrast(limit=0.2, p=0.5),
RandomGamma(gamma_limit=(80, 120), p=0.5),
RandomBrightness(limit=0.2, p=0.5),
HueSaturationValue(hue_shift_limit=5, sat_shift_limit=20,
val_shift_limit=10, p=.9),
# CLAHE(p=1.0, clip_limit=2.0),
ShiftScaleRotate(
shift_limit=0.0625, scale_limit=0.1,
rotate_limit=15, border_mode=cv2.BORDER_REFLECT_101, p=0.8),
ToFloat(max_value=255)
])
AUGMENTATIONS_TEST = Compose([
# CLAHE(p=1.0, clip_limit=2.0),
ToFloat(max_value=255)
])
正在创建 DataGenerator 对象:
train_datagen = DataGenerator( train['images'],
train['target'],
augmentations=AUGMENTATIONS_TRAIN,
batch_size=32,
image_dimension=(224,224,3) )
val_datagen = DataGenerator( validation['images'],
validation['target'],
augmentations=AUGMENTATIONS_TEST,
batch_size=16,
image_dimension=(224,224,3) )`
当我出现 NonImplementedError
运行model.fit_generator(generator=train_datagen,steps_per_epoch=30,epochs = 30,validation_data=val_datagen,validation_steps=15)
我已经分享了我的内核 here 并且 我正在寻求 here 的帮助。 我也一直在寻找其他增强方式,它们都是一样的。
如果有人能告诉我为什么以及哪里出了问题,我将不胜感激?还有在 keras 中进行自定义图像增强的其他好方法吗?
你可以看看 imgaug 库。 albumentations 和 imgaug 几乎相同。写出操作顺序,然后直接放到Imagedatagenerator中preprocessing_function。我尝试使用 albumentations 库,但遇到了一些错误。
from imgaug import augmenters as iaa
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontally flip
# sometimes(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05), per_channel=0.5)),
iaa.OneOf([
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# iaa.Noop(),
iaa.GaussianBlur(sigma=(0.0, 1.0)),
# iaa.Noop(),
iaa.Affine(rotate=(-10, 10), translate_percent={"x": (-0.25, 0.25)}, mode='symmetric', cval=(0)),
# iaa.Noop(),
# iaa.PerspectiveTransform(scale=(0.04, 0.08)),
# # iaa.Noop(),
# iaa.PiecewiseAffine(scale=(0.05, 0.1), mode='edge', cval=(0)),
]),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)),
# More as you want ...
], random_order=True)
datagen = ImageDataGenerator(preprocessing_function=seq.augment_image)
有一些高级数据增强实践,例如剪切、随机擦除和混合。它们很容易在 Keras 中实现。对于 mixup,示例如下:
training_generator = MixupGenerator(trainX, trainY, batch_size=8, alpha=0.2, datagen=datagen)()
x, y = next(training_generator)
# To visualize the batch images
for i in range(9):
plt.subplot(330+1+i)
# batch = it.next()
img = x[i]
plt.imshow(img.reshape(224, 224, 3))
plt.savefig("mixup_batch.png")
H = model.fit_generator(
# datagen.flow(trainX, trainY, batch_size=args.batch_size),
training_generator,
steps_per_epoch=len(trainX) // args.batch_size,
validation_data=(valX, valY),
validation_steps=len(valX) // args.batch_size,
epochs=args.epochs,
# workers=4,
callbacks=[model_checkpoint, lr_reducer, stopping, lr_schedule],
)
我在这方面遇到的问题是,对于随机擦除,我们需要将其放入 ImageDataGenerator preprocessing_function 并且我们已经将 imgaug 增强放入其中。可能的替代方法是使用两个数据生成器。