imblearn 管道是否关闭测试采样?

Does imblearn pipeline turn off sampling for testing?

让我们假设以下代码(来自imblearn example on pipelines

...    
# Instanciate a PCA object for the sake of easy visualisation
pca = PCA(n_components=2)

# Create the samplers
enn = EditedNearestNeighbours()
renn = RepeatedEditedNearestNeighbours()

# Create the classifier
knn = KNN(1)

# Make the splits
X_train, X_test, y_train, y_test = tts(X, y, random_state=42)

# Add one transformers and two samplers in the pipeline object
pipeline = make_pipeline(pca, enn, renn, knn)

pipeline.fit(X_train, y_train)
y_hat = pipeline.predict(X_test)

我想确保在执行pipeline.predict(X_test)时不会执行采样程序ennrenn(当然pca必须是已执行)。

  1. First, it is clear to me that over-, under-, and mixed-sampling are procedures to be applied to the training set, not to the test/validation set. Please correct me here if I am wrong.

  2. I browsed though the imblearn Pipeline code but I could not find the predict method there.

  3. I also would like to be sure that this correct behavior works when the pipeline is inside a GridSearchCV

我只是需要一些保证,这就是 imblearn.Pipeline 发生的情况。

编辑:2020-08-28

@wundermahn 的回答就是我所需要的。

此编辑只是为了补充一点,这就是为什么应该使用 imblearn.Pipeline 进行不平衡预处理而不是 sklearn.Pipelineimblearn 文档中我找不到解释的任何地方为什么在有 sklearn.Pipeline

时需要 imblearn.Pipeline

好问题。要按照您发布的顺序浏览它们:

  1. First, it is clear to me that over-, under-, and mixed-sampling are procedures to be applied to the training set, not to the test/validation set. Please correct me here if I am wrong.

没错。您当然不想测试(无论是在您的 test 还是 validation 数据上) 代表实际的、现场的、“生产”的数据“数据集。您真的应该只将其应用于培训。请注意,如果您使用 cross-fold 验证之类的技术,则应将采样单独应用于每个折叠,如 this IEEE paper 所示。

  1. I browsed though the imblearn Pipeline code but I could not find the predict method there.

我假设您找到了 imblearn.pipeline source code,如果您找到了,您要做的就是查看 fit_predict 方法:

 @if_delegate_has_method(delegate="_final_estimator")
    def fit_predict(self, X, y=None, **fit_params):
        """Apply `fit_predict` of last step in pipeline after transforms.
        Applies fit_transforms of a pipeline to the data, followed by the
        fit_predict method of the final estimator in the pipeline. Valid
        only if the final estimator implements fit_predict.
        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of
            the pipeline.
        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps
            of the pipeline.
        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.
        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The predicted target.
        """
        Xt, yt, fit_params = self._fit(X, y, **fit_params)
        with _print_elapsed_time('Pipeline',
                                 self._log_message(len(self.steps) - 1)):
            y_pred = self.steps[-1][-1].fit_predict(Xt, yt, **fit_params)
        return y_pred

在这里,我们可以看到 pipeline 在管道中使用了最终估计器的 .predict 方法,在您发布的示例中,scikit-learn's knn:

 def predict(self, X):
        """Predict the class labels for the provided data.
        Parameters
        ----------
        X : array-like of shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            Test samples.
        Returns
        -------
        y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
            Class labels for each data sample.
        """
        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)
        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_outputs = len(classes_)
        n_queries = _num_samples(X)
        weights = _get_weights(neigh_dist, self.weights)

        y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
        for k, classes_k in enumerate(classes_):
            if weights is None:
                mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
            else:
                mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)

            mode = np.asarray(mode.ravel(), dtype=np.intp)
            y_pred[:, k] = classes_k.take(mode)

        if not self.outputs_2d_:
            y_pred = y_pred.ravel()

        return y_pred
  1. I also would like to be sure that this correct behaviour works when the pipeline is inside a GridSearchCV

这种假设以上两个假设都是正确的,我认为这意味着你想要一个 complete, minimal, reproducible example of this working in a GridSearchCV. There is extensive documentation from scikit-learn on this,但我使用 knn 创建的示例如下:

import pandas as pd, numpy as np

from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV, train_test_split

param_grid = [
    {
        'classification__n_neighbors': [1,3,5,7,10],
    }
]

X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.20)

pipe = Pipeline([
    ('sampling', SMOTE()),
    ('classification', KNeighborsClassifier())
])

grid = GridSearchCV(pipe, param_grid=param_grid)
grid.fit(X_train, y_train)
mean_scores = np.array(grid.cv_results_['mean_test_score'])
print(mean_scores)

# [0.98051926 0.98121129 0.97981998 0.98050474 0.97494193]

你的直觉很准确,干得好:)