手动对数似然与 logLike 函数之间的区别
Difference between log likelihood by hand and logLike function
我正在尝试比较 logLik 函数给出的对数似然函数的值和手动计算的 Gamma 分布值。 logLik函数给出的值为:
require(fitdistrplus)
x = rgamma(50,shape = 2, scale = 10)
Gamma_fitdist = fitdist(x,"gamma")
logLik(Gamma_fitdistr)
-189.4192
“手动”对数似然函数是:
gmll <- function(scale,shape,datta){
a <- scale
b <- shape
n <- length(datta)
sumd <- sum(datta)
sumlogd <- sum(log(datta))
gmll <- n*a*log(b) + n*lgamma(a) + sumd/b - (a-1)*sumlogd
gmll
}
gmll(scale = 10, shape = 2, datta = x)
-246.6081
为什么 logLik 函数给我不同的值?谢谢!
你颠倒了比例和形状,你的代码中有几个符号错误。
library(fitdistrplus)
set.seed(666)
x = rgamma(50, shape = 2, scale = 4)
Gamma_fitdist = fitdist(x,"gamma")
logLik(Gamma_fitdist)
# -150.3687
gmll <- function(scale,shape,datta){
a <- shape
b <- scale
n <- length(datta)
sumd <- sum(datta)
sumlogd <- sum(log(datta))
-n*a*log(b) - n*lgamma(a) - sumd/b + (a-1)*sumlogd
}
rate <- Gamma_fitdist$estimate[["rate"]]
shape <- Gamma_fitdist$estimate[["shape"]]
gmll(scale = 1/rate, shape = shape, datta = x)
# -150.3687
我正在尝试比较 logLik 函数给出的对数似然函数的值和手动计算的 Gamma 分布值。 logLik函数给出的值为:
require(fitdistrplus)
x = rgamma(50,shape = 2, scale = 10)
Gamma_fitdist = fitdist(x,"gamma")
logLik(Gamma_fitdistr)
-189.4192
“手动”对数似然函数是:
gmll <- function(scale,shape,datta){
a <- scale
b <- shape
n <- length(datta)
sumd <- sum(datta)
sumlogd <- sum(log(datta))
gmll <- n*a*log(b) + n*lgamma(a) + sumd/b - (a-1)*sumlogd
gmll
}
gmll(scale = 10, shape = 2, datta = x)
-246.6081
为什么 logLik 函数给我不同的值?谢谢!
你颠倒了比例和形状,你的代码中有几个符号错误。
library(fitdistrplus)
set.seed(666)
x = rgamma(50, shape = 2, scale = 4)
Gamma_fitdist = fitdist(x,"gamma")
logLik(Gamma_fitdist)
# -150.3687
gmll <- function(scale,shape,datta){
a <- shape
b <- scale
n <- length(datta)
sumd <- sum(datta)
sumlogd <- sum(log(datta))
-n*a*log(b) - n*lgamma(a) - sumd/b + (a-1)*sumlogd
}
rate <- Gamma_fitdist$estimate[["rate"]]
shape <- Gamma_fitdist$estimate[["shape"]]
gmll(scale = 1/rate, shape = shape, datta = x)
# -150.3687