在迷宫中创建精灵和列表(不是精灵)之间的碰撞

Creating collisions between a Sprite and a list (that aren't sprites) in a Maze

我一直在研究一个随机生成的迷宫游戏,敌人会穿过迷宫向玩家移动。但是,我遇到了玩家能够穿过迷宫墙壁的问题,我遇到的问题是迷宫的墙壁不是精灵,因此不能使用精灵碰撞或矩形碰撞。还有其他方法可以阻止玩家穿过墙壁吗?我能想到的唯一选择是获取所使用的每面墙的位置,并防止玩家移动到 x 或 y 的那个值。下面是我想要发生的事情的直观表示:

迷宫密码

class Cell(object):
    def __init__(self, x, y, cell_size, screen, black, white, red, blue):
        # position in matrix
        self.x = x
        self.y = y
        # keeps track of which walls are still visible
        self.walls = [True, True, True, True]
        # checks if cell has been visited during generation
        self.generated = False
        # checks if cell is on path during solving
        self.on_path = False
        # checks if cell has been visited during solving
        self.visited = False
        self.cell_size = cell_size
        self.screen = screen
        self.black = black
        self.white = white
        self.red = red
        self.blue = blue

    def draw_cell(self):
        # coordinates on screen
        x = self.x * self.cell_size
        y = self.y * self.cell_size
        # draws a wall if it still exists
        if self.walls[0]:
            pygame.draw.line(self.screen, self.black, (x, y), (x + self.cell_size, y), 5)

        if self.walls[1]:
            pygame.draw.line(self.screen, self.black,
                             (x, y + self.cell_size), (x + self.cell_size, y + self.cell_size), 5)
        if self.walls[2]:
            pygame.draw.line(self.screen, self.black,
                             (x + self.cell_size, y), (x + self.cell_size, y + self.cell_size), 5)
        if self.walls[3]:
            pygame.draw.line(self.screen, self.black, (x, y), (x, y + self.cell_size), 5)
        # marks out white if generated during generation
        if self.generated:
            pygame.draw.rect(self.screen, self.white, (x, y, self.cell_size, self.cell_size))


class Maze():
    def __init__(self, screen, cell_size, rows, cols, white, black, red, blue):
        self.screen = screen
        self.cell_size = cell_size
        self.rows = rows
        self.cols = cols
        self.state = None
        self.maze = []
        self.stack = []
        self.current_x = 0
        self.current_y = 0
        self.row = []
        self.neighbours = []
        self.black = black
        self.white = white
        self.red = red
        self.blue = blue
        self.cell = None
        self.maze_generated = False

    def on_start(self):
        # maintains the current state
        # maze matrix of cell instances
        self.maze = []
        # stack of current cells on path
        self.stack = []
        self.current_x, self.current_y = 0, 0

        self.maze.clear()
        self.stack.clear()
        for x in range(self.cols):
            self.row = []
            for y in range(self.rows):
                self.cell = Cell(x, y, self.cell_size, self.screen,
                                 self.black, self.white, self.red, self.blue)
                self.row.append(self.cell)
            self.maze.append(self.row)

    def in_bounds(self, x, y):
        return 0 <= x < self.cols and 0 <= y < self.rows
    # if x and y are within the bounds of the walls

    def find_next_cell(self, x, y):
        # keeps track of valid neighbors
        self.neighbours = []

        # loop through these two arrays to find all 4 neighbor cells
        dx, dy = [1, -1, 0, 0], [0, 0, 1, -1]
        for d in range(4):
            # add cell to neighbor list if it is in bounds and not generated
            if self.in_bounds(x + dx[d], y + dy[d]):
                if not self.maze[x + dx[d]][y + dy[d]].generated:
                    self.neighbours.append((x + dx[d], y + dy[d]))
        # returns a random cell in the neighbors list, or -1 -1 otherwise
        if len(self.neighbours) > 0:
            return self.neighbours[random.randint(0, len(self.neighbours) - 1)]
        else:
            return -1, -1

    def remove_wall(self, x1, y1, x2, y2):
        # x distance between original cell and neighbor cell
        xd = self.maze[x1][y1].x - self.maze[x2][y2].x
        # to the bottom
        if xd == 1:
            self.maze[x1][y1].walls[3] = False
            self.maze[x2][y2].walls[1] = False
        # to the top
        elif xd == -1:
            self.maze[x1][y1].walls[1] = False
            self.maze[x2][y2].walls[3] = False
        # y distance between original cell and neighbor cell
        xy = self.maze[x1][y1].y - self.maze[x2][y2].y
        # to the right
        if xy == 1:
            self.maze[x1][y1].walls[0] = False
            self.maze[x2][y2].walls[2] = False
        # to the left
        elif xy == -1:
            self.maze[x1][y1].walls[2] = False
            self.maze[x2][y2].walls[0] = False

    def create_maze(self):
        # if self.maze_generated == False:
        self.maze[self.current_x][self.current_y].generated = True
        # self.maze[self.current_x][self.current_y].draw_current()
        next_cell = self.find_next_cell(self.current_x, self.current_y)
        # checks if a neighbor was returned
        if next_cell[0] >= 0 and next_cell[1] >= 0:
            self.stack.append((self.current_x, self.current_y))
            self.remove_wall(self.current_x, self.current_y, next_cell[0], next_cell[1])
            self.current_x = next_cell[0]
            self.current_y = next_cell[1]
        # no neighbor, so go to the previous cell in the stack
        elif len(self.stack) > 0:
            previous = self.stack.pop()
            self.current_x = previous[0]
            self.current_y = previous[1]
        # else:
        self.maze_generated = True

计算播放器矩形的角点points的行数和列数。

col_l = player.rect.left // CELL_SIZE  
col_r = player.rect.right // CELL_SIZE
row_t = player.rect.top // CELL_SIZE  
row_b = player.rect.bottom // CELL_SIZE  

如果玩家移动,测试玩家是否正在进入一个新的单元格。如果当前单元格和新单元格之间有墙,则跳过移动:

keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:
    new_rect = player.rect.move(-1, 0)
    next_col = new_rect.left // CELL_SIZE
    if col_l == next_col or not (m.maze[col_l][row_t].walls[3] or m.maze[col_l][row_b].walls[3]):
        player.rect = new_rect
if keys[pygame.K_RIGHT]:
    new_rect = player.rect.move(1, 0)
    next_col = new_rect.right // CELL_SIZE
    if col_r == next_col or not (m.maze[col_r][row_t].walls[1] or m.maze[col_r][row_b].walls[1]):
        player.rect = new_rect
if keys[pygame.K_UP]:
    new_rect = player.rect.move(0, -1)
    next_row = new_rect.top // CELL_SIZE
    if row_t == next_row or not (m.maze[col_l][row_t].walls[0] or m.maze[col_r][row_t].walls[0]):
        player.rect = new_rect
if keys[pygame.K_DOWN]:
    new_rect = player.rect.move(0, 1)
    next_row = new_rect.bottom // CELL_SIZE
    if row_b == next_row or not (m.maze[col_l][row_b].walls[2] or m.maze[col_r][row_b].walls[2]):
        player.rect = new_rect

另见 and


完整示例,基于您之前的问题 :

import pygame
import random

class Cell(object):
    def __init__(self, x, y, cell_size, screen, black, white, red, blue):
        # position in matrix
        self.x = x
        self.y = y
        # keeps track of which walls are still visible
        self.walls = [True, True, True, True]
        # checks if cell has been visited during generation
        self.generated = False
        # checks if cell is on path during solving
        self.on_path = False
        # checks if cell has been visited during solving
        self.visited = False
        self.cell_size = cell_size
        self.screen = screen
        self.black = black
        self.white = white
        self.red = red
        self.blue = blue

    def draw_cell(self):
        # coordinates on screen
        x = self.x * self.cell_size
        y = self.y * self.cell_size
        # draws a wall if it still exists
        if self.walls[0]:
            pygame.draw.line(self.screen, self.black, (x, y), (x + self.cell_size, y), 5)
        if self.walls[1]:
            pygame.draw.line(self.screen, self.black,
                             (x, y + self.cell_size), (x + self.cell_size, y + self.cell_size), 5)
        if self.walls[2]:
            pygame.draw.line(self.screen, self.black,
                             (x + self.cell_size, y), (x + self.cell_size, y + self.cell_size), 5)
        if self.walls[3]:
            pygame.draw.line(self.screen, self.black, (x, y), (x, y + self.cell_size), 5)
        # marks out white if generated during generation
        if self.generated:
            pygame.draw.rect(self.screen, self.white, (x, y, self.cell_size, self.cell_size))


class Maze:
    def __init__(self, screen, cell_size, rows, cols, white, black, red, blue):
        self.screen = screen
        self.cell_size = cell_size
        self.rows = rows
        self.cols = cols
        self.state = None
        self.maze = []
        self.stack = []
        self.current_x = 0
        self.current_y = 0
        self.row = []
        self.neighbours = []
        self.black = black
        self.white = white
        self.red = red
        self.blue = blue
        self.cell = None

    def on_start(self):
        # maintains the current state
        # maze matrix of cell instances
        self.maze = []
        # stack of current cells on path
        self.stack = []
        self.current_x, self.current_y = 0, 0

        self.maze.clear()
        self.stack.clear()
        for x in range(self.cols):
            self.row = []
            for y in range(self.rows):
                self.cell = Cell(x, y, self.cell_size, self.screen, self.black, self.white, self.red, self.blue)
                self.row.append(self.cell)
            self.maze.append(self.row)

    def in_bounds(self, x, y):
        return 0 <= x < self.cols and 0 <= y < self.rows

    def find_next_cell(self, x, y):
        # keeps track of valid neighbors
        self.neighbours = []

        # loop through these two arrays to find all 4 neighbor cells
        dx, dy = [1, -1, 0, 0], [0, 0, 1, -1]
        for d in range(4):
            # add cell to neighbor list if it is in bounds and not generated
            if self.in_bounds(x + dx[d], y + dy[d]):
                if not self.maze[x + dx[d]][y + dy[d]].generated:
                    self.neighbours.append((x + dx[d], y + dy[d]))
        # returns a random cell in the neighbors list, or -1 -1 otherwise
        if len(self.neighbours) > 0:
            return self.neighbours[random.randint(0, len(self.neighbours) - 1)]
        else:
            return -1, -1

    def remove_wall(self, x1, y1, x2, y2):
        # x distance between original cell and neighbor cell
        xd = self.maze[x1][y1].x - self.maze[x2][y2].x
        # to the bottom
        if xd == 1:
            self.maze[x1][y1].walls[3] = False
            self.maze[x2][y2].walls[1] = False
        # to the top
        elif xd == -1:
            self.maze[x1][y1].walls[1] = False
            self.maze[x2][y2].walls[3] = False
        # y distance between original cell and neighbor cell
        xy = self.maze[x1][y1].y - self.maze[x2][y2].y
        # to the right
        if xy == 1:
            self.maze[x1][y1].walls[0] = False
            self.maze[x2][y2].walls[2] = False
        # to the left
        elif xy == -1:
            self.maze[x1][y1].walls[2] = False
            self.maze[x2][y2].walls[0] = False

    def create_maze(self):
        self.maze[self.current_x][self.current_y].generated = True
        # self.maze[self.current_x][self.current_y].draw_current()
        next_cell = self.find_next_cell(self.current_x, self.current_y)
        # checks if a neighbor was returned
        if next_cell[0] >= 0 and next_cell[1] >= 0:
            self.stack.append((self.current_x, self.current_y))
            self.remove_wall(self.current_x, self.current_y, next_cell[0], next_cell[1])
            self.current_x = next_cell[0]
            self.current_y = next_cell[1]
        # no neighbor, so go to the previous cell in the stack
        elif len(self.stack) > 0:
            previous = self.stack.pop()
            self.current_x = previous[0]
            self.current_y = previous[1]


class Player(pygame.sprite.Sprite):
    def __init__(self):
        super().__init__()
        self.image = pygame.Surface((20, 20))
        self.image.fill((255, 0, 0))
        self.rect = self.image.get_rect(center = (20, 20))

def main():
    WIDTH, HEIGHT = 800, 800
    CELL_SIZE = 40
    ROWS, COLUMNS = int(HEIGHT / CELL_SIZE), int(WIDTH / CELL_SIZE)

    # color variables
    WHITE = (255, 255, 255)
    BLACK = (0, 0, 0)
    RED = (255, 0, 0)
    BLUE = (0, 0, 255)

    # initialize pygame
    pygame.init()
    SCREEN = pygame.display.set_mode((WIDTH, HEIGHT))
    pygame.display.set_caption("Maze Gen")
    CLOCK = pygame.time.Clock()
    FPS = 60

    m = Maze(SCREEN, CELL_SIZE, ROWS, COLUMNS, WHITE, BLACK, RED, BLUE)
    m.on_start()
    while True:
        m.create_maze()
        if len(m.stack) == 0:
            break

    player = Player()
    all_sprites = pygame.sprite.Group(player)

    running = True
    while running:
        CLOCK.tick(FPS)
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                running = False

        col_l = player.rect.left // CELL_SIZE  
        col_r = player.rect.right // CELL_SIZE
        row_t = player.rect.top // CELL_SIZE  
        row_b = player.rect.bottom // CELL_SIZE  

        keys = pygame.key.get_pressed()
        if keys[pygame.K_LEFT]:
            new_rect = player.rect.move(-1, 0)
            next_col = new_rect.left // CELL_SIZE
            if col_l == next_col or not (m.maze[col_l][row_t].walls[3] or m.maze[col_l][row_b].walls[3]):
                player.rect = new_rect
        if keys[pygame.K_RIGHT]:
            new_rect = player.rect.move(1, 0)
            next_col = new_rect.right // CELL_SIZE
            if col_r == next_col or not (m.maze[col_r][row_t].walls[1] or m.maze[col_r][row_b].walls[1]):
                player.rect = new_rect
        if keys[pygame.K_UP]:
            new_rect = player.rect.move(0, -1)
            next_row = new_rect.top // CELL_SIZE
            if row_t == next_row or not (m.maze[col_l][row_t].walls[0] or m.maze[col_r][row_t].walls[0]):
                player.rect = new_rect
        if keys[pygame.K_DOWN]:
            new_rect = player.rect.move(0, 1)
            next_row = new_rect.bottom // CELL_SIZE
            if row_b == next_row or not (m.maze[col_l][row_b].walls[2] or m.maze[col_r][row_b].walls[2]):
                player.rect = new_rect

        SCREEN.fill(WHITE)
        for i in range(m.cols):
            for j in range(m.rows):
                m.maze[i][j].draw_cell()
        all_sprites.draw(SCREEN)
        pygame.display.flip()

if __name__ == "__main__":
    main()
pygame.quit()