如何解决回溯和未知 objective 函数的 XGBoost 错误?
How to solve XGBoost error for traceback and unknown objective function?
我正在尝试构建 XGBoost 二元分类模型。我设置了我的训练和测试数据并执行了以下操作以将数据拟合到模型中。
clf_xgb = xgb.XGBClassifier(objective = 'binary: logistic', missing = None, seed = 42)
clf_xgb.fit(X_train,
y_train,
eval_set = [(X_test, y_test)],
eval_metric = 'aucpr',
early_stopping_rounds=10,
verbose = True
)
当我 运行 此代码时,我收到以下错误消息:
XGBoostError Traceback (most recent call last)
<ipython-input-32-2a6f36907545> in <module>
----> 1 clf_xgb.fit(X_train,
2 y_train,
3 eval_set = [(X_test, y_test)],
4 eval_metric = 'aucpr',
5 early_stopping_rounds=10,
D:\Softwares\anaconda\lib\site-packages\xgboost\core.py in inner_f(*args, **kwargs)
434 for k, arg in zip(sig.parameters, args):
435 kwargs[k] = arg
--> 436 return f(**kwargs)
437
438 return inner_f
D:\Softwares\anaconda\lib\site-packages\xgboost\sklearn.py in fit(self, X, y, sample_weight, base_margin, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set, base_margin_eval_set, feature_weights, callbacks)
1174 )
1175
-> 1176 self._Booster = train(
1177 params,
1178 train_dmatrix,
D:\Softwares\anaconda\lib\site-packages\xgboost\training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, xgb_model, callbacks)
187 Booster : a trained booster model
188 """
--> 189 bst = _train_internal(params, dtrain,
190 num_boost_round=num_boost_round,
191 evals=evals,
D:\Softwares\anaconda\lib\site-packages\xgboost\training.py in _train_internal(params, dtrain, num_boost_round, evals, obj, feval, xgb_model, callbacks, evals_result, maximize, verbose_eval, early_stopping_rounds)
74 show_stdv=False, cvfolds=None)
75
---> 76 bst = callbacks.before_training(bst)
77
78 for i in range(start_iteration, num_boost_round):
D:\Softwares\anaconda\lib\site-packages\xgboost\callback.py in before_training(self, model)
374 '''Function called before training.'''
375 for c in self.callbacks:
--> 376 model = c.before_training(model=model)
377 msg = 'before_training should return the model'
378 if self.is_cv:
D:\Softwares\anaconda\lib\site-packages\xgboost\callback.py in before_training(self, model)
513
514 def before_training(self, model):
--> 515 self.starting_round = model.num_boosted_rounds()
516 return model
517
D:\Softwares\anaconda\lib\site-packages\xgboost\core.py in num_boosted_rounds(self)
2005 rounds = ctypes.c_int()
2006 assert self.handle is not None
-> 2007 _check_call(_LIB.XGBoosterBoostedRounds(self.handle, ctypes.byref(rounds)))
2008 return rounds.value
2009
D:\Softwares\anaconda\lib\site-packages\xgboost\core.py in _check_call(ret)
208 """
209 if ret != 0:
--> 210 raise XGBoostError(py_str(_LIB.XGBGetLastError()))
211
212
XGBoostError: [12:05:23] C:\Users\Administrator\workspace\xgboost-win64_release_1.4.0\src\objective\objective.cc:26: Unknown objective function: `binary: logistic`
Objective candidate: survival:aft
Objective candidate: binary:hinge
Objective candidate: multi:softmax
Objective candidate: multi:softprob
Objective candidate: rank:pairwise
Objective candidate: rank:ndcg
Objective candidate: rank:map
Objective candidate: count:poisson
Objective candidate: survival:cox
Objective candidate: reg:gamma
Objective candidate: reg:tweedie
Objective candidate: reg:squarederror
Objective candidate: reg:squaredlogerror
Objective candidate: reg:logistic
Objective candidate: reg:pseudohubererror
Objective candidate: binary:logistic
Objective candidate: binary:logitraw
Objective candidate: reg:linear
谁能解释一下这是怎么回事。我该如何解决这个错误?
我正在使用 Jupyter Notebook 和 Python 3 并使用最新的 XGB 库版本。
从 'binary:logistic'
中删除 space,它应该可以工作。根据此 this 文档,两者之间没有 space。
我正在尝试构建 XGBoost 二元分类模型。我设置了我的训练和测试数据并执行了以下操作以将数据拟合到模型中。
clf_xgb = xgb.XGBClassifier(objective = 'binary: logistic', missing = None, seed = 42)
clf_xgb.fit(X_train,
y_train,
eval_set = [(X_test, y_test)],
eval_metric = 'aucpr',
early_stopping_rounds=10,
verbose = True
)
当我 运行 此代码时,我收到以下错误消息:
XGBoostError Traceback (most recent call last)
<ipython-input-32-2a6f36907545> in <module>
----> 1 clf_xgb.fit(X_train,
2 y_train,
3 eval_set = [(X_test, y_test)],
4 eval_metric = 'aucpr',
5 early_stopping_rounds=10,
D:\Softwares\anaconda\lib\site-packages\xgboost\core.py in inner_f(*args, **kwargs)
434 for k, arg in zip(sig.parameters, args):
435 kwargs[k] = arg
--> 436 return f(**kwargs)
437
438 return inner_f
D:\Softwares\anaconda\lib\site-packages\xgboost\sklearn.py in fit(self, X, y, sample_weight, base_margin, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set, base_margin_eval_set, feature_weights, callbacks)
1174 )
1175
-> 1176 self._Booster = train(
1177 params,
1178 train_dmatrix,
D:\Softwares\anaconda\lib\site-packages\xgboost\training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, xgb_model, callbacks)
187 Booster : a trained booster model
188 """
--> 189 bst = _train_internal(params, dtrain,
190 num_boost_round=num_boost_round,
191 evals=evals,
D:\Softwares\anaconda\lib\site-packages\xgboost\training.py in _train_internal(params, dtrain, num_boost_round, evals, obj, feval, xgb_model, callbacks, evals_result, maximize, verbose_eval, early_stopping_rounds)
74 show_stdv=False, cvfolds=None)
75
---> 76 bst = callbacks.before_training(bst)
77
78 for i in range(start_iteration, num_boost_round):
D:\Softwares\anaconda\lib\site-packages\xgboost\callback.py in before_training(self, model)
374 '''Function called before training.'''
375 for c in self.callbacks:
--> 376 model = c.before_training(model=model)
377 msg = 'before_training should return the model'
378 if self.is_cv:
D:\Softwares\anaconda\lib\site-packages\xgboost\callback.py in before_training(self, model)
513
514 def before_training(self, model):
--> 515 self.starting_round = model.num_boosted_rounds()
516 return model
517
D:\Softwares\anaconda\lib\site-packages\xgboost\core.py in num_boosted_rounds(self)
2005 rounds = ctypes.c_int()
2006 assert self.handle is not None
-> 2007 _check_call(_LIB.XGBoosterBoostedRounds(self.handle, ctypes.byref(rounds)))
2008 return rounds.value
2009
D:\Softwares\anaconda\lib\site-packages\xgboost\core.py in _check_call(ret)
208 """
209 if ret != 0:
--> 210 raise XGBoostError(py_str(_LIB.XGBGetLastError()))
211
212
XGBoostError: [12:05:23] C:\Users\Administrator\workspace\xgboost-win64_release_1.4.0\src\objective\objective.cc:26: Unknown objective function: `binary: logistic`
Objective candidate: survival:aft
Objective candidate: binary:hinge
Objective candidate: multi:softmax
Objective candidate: multi:softprob
Objective candidate: rank:pairwise
Objective candidate: rank:ndcg
Objective candidate: rank:map
Objective candidate: count:poisson
Objective candidate: survival:cox
Objective candidate: reg:gamma
Objective candidate: reg:tweedie
Objective candidate: reg:squarederror
Objective candidate: reg:squaredlogerror
Objective candidate: reg:logistic
Objective candidate: reg:pseudohubererror
Objective candidate: binary:logistic
Objective candidate: binary:logitraw
Objective candidate: reg:linear
谁能解释一下这是怎么回事。我该如何解决这个错误? 我正在使用 Jupyter Notebook 和 Python 3 并使用最新的 XGB 库版本。
从 'binary:logistic'
中删除 space,它应该可以工作。根据此 this 文档,两者之间没有 space。