TensorFlow 词嵌入模型 + LDA 传递给 LatentDirichletAllocation.fit 的数据中的负值

TensorFlow word embedding model + LDA Negative values in data passed to LatentDirichletAllocation.fit

在将生成的特征向量传递给 LDA 模型之前,我正在尝试使用来自 TensorFlow hub 的预训练 model 而不是频率向量化技术进行词嵌入。

我按照 TensorFlow 模型的步骤进行操作,但在将生成的特征向量传递给 LDA 模型时出现此错误:

Negative values in data passed to LatentDirichletAllocation.fit

这是我到目前为止实现的内容:

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow_hub as hub

from sklearn.decomposition import LatentDirichletAllocation

embed = hub.load("https://tfhub.dev/google/tf2-preview/nnlm-en-dim50-with-normalization/1")
embeddings = embed(["cat is on the mat", "dog is in the fog"])
lda_model = LatentDirichletAllocation(n_components=2, max_iter=50)
lda = lda_model.fit_transform(embeddings)

我意识到 print(embeddings) 打印了一些负值,如下所示:

tf.Tensor(
[[ 0.16589954  0.0254965   0.1574857   0.17688066  0.02911299 -0.03092718
   0.19445257 -0.05709129 -0.08631689 -0.04391516  0.13032274  0.10905275
  -0.08515751  0.01056632 -0.17220995 -0.17925954  0.19556305  0.0802278
  -0.03247919 -0.49176937 -0.07767699 -0.03160921 -0.13952136  0.05959712
   0.06858718  0.22386682 -0.16653948  0.19412343 -0.05491862  0.10997339
  -0.15811177 -0.02576607 -0.07910853 -0.258499   -0.04206644 -0.20052543
   0.1705603  -0.15314153  0.0039225  -0.28694248  0.02468278  0.11069503
   0.03733957  0.01433943 -0.11048374  0.11931834 -0.11552787 -0.11110869
   0.02384969 -0.07074881]

但是,有解决办法吗?

由于LatentDirichletAllocationfit函数不允许负数组,我建议你在embeddings上应用softplus

这是代码片段:

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow_hub as hub
from tensorflow.math import softplus

from sklearn.decomposition import LatentDirichletAllocation

embed = hub.load("https://tfhub.dev/google/tf2-preview/nnlm-en-dim50-with-normalization/1")
embeddings = softplus(embed(["cat is on the mat", "dog is in the fog"]))

lda_model = LatentDirichletAllocation(n_components=2, max_iter=50)
lda = lda_model.fit_transform(embeddings)