为什么前向渲染灯时会出现 Z-fighting?

Why is there Z-fighting when forward rendering lights?

在我的 OpenGL 程序中,我注意到在前向渲染算法中光线混合在一起的地方出现了黑色像素。起初我忽略了它,直到我切换 Window API(从 SDL 到 GLFW)时它变得太有视觉问题了。

当我禁用 GL_DEPTH_TEST 时,黑色伪像消失了,但它们后面的灯光变得透明,所以这不是解决方案。 (这就是我发现潜在问题的方式)

我不确定问题出在哪里,可能是深度缓冲区问题,但切换 window API 可以增强伪像,有什么帮助吗?

当我移动相机时图案会闪烁

似乎黑色 lines/dots 在每个三角形中都是孤立的

这是我混合灯光的地方

// Note: I wrapped OpenGL calls into wrapper functions but the naming convenction is still the same
gl::Clear(gl::e_ColorBufferBit | gl::e_DepthBufferBit);

mesh->Render(m_forward_ambient);
gl::Enable(gl::e_Blend);
gl::SetBlendFunc(gl::e_One, gl::e_One); // Additive blending
gl::SetDepthMask(false); // No need to write to depth buffer
gl::SetDepthFunc(gl::e_Equal); // Only draw fragments of equal depths (ignore fragments behind basically)
{
    for (word i = 0; i < m_lights.Length(); ++i)
    {
        m_active_light = m_lights[i];
        mesh->Render(m_active_light->shader); // Shaders use active light
    }
}
gl::SetDepthFunc(gl::e_Lequal); // Restore default state
gl::SetDepthMask(true);
gl::Disable(gl::e_Blend);

Shader代码(shader有全部代码,其他实现较少)

// Vertex
void main()
{
    // pv_matrix is projection and camera, ml_matrix is model transform
    gl_Position = pv_matrix * ml_matrix * vec4(pos, 1);
    f_pos = (ml_matrix * vec4(pos, 1)).xyz;
    f_nrm = (ml_matrix * vec4(normalize(nrm), 0)).xyz;
    f_txc = txc;
}
// Fragment
struct Light
{
    vec3 color;
    float intensity;
};
struct Attenuation
{
    float constant;
    float linear;
    float exponent;
};
struct PointLight
{
    Light light;
    Attenuation atten;
    vec3 position;
    float range;
};
struct SpotLight
{
    PointLight plight;
    vec3 direction;
    float cutoff;
};
vec4 CalculateLight(Light light, vec3 direction, vec3 normal)
{
    float diffuse_factor = dot(normal, -direction);
    vec4 diffuse_color = vec4(0, 0, 0, 0);
    vec4 specular_color = vec4(0, 0, 0, 0);

    if (diffuse_factor > 0)
        diffuse_color = vec4(light.color, 1) * light.intensity * diffuse_factor;

    vec3 direction_to_eye = normalize(eye_pos - f_pos); // eye_pos is uniform for camera pos, f_pos is (position) attribute sent from vertex shader
    vec3 reflect_direction = normalize(reflect(direction, normal));
    float specular_factor = dot(reflect_direction, direction_to_eye); // specular calculations
    if (specular_factor > 0)
    {
        specular_factor = pow(specular_factor, specular_power);
        specular_color = vec4(light.color, 1) * specular_intensity * specular_factor;
    }

    return diffuse_color + specular_color;
}

vec4 CalculatePointLight(PointLight plight, vec3 normal)
{
    vec3 light_direction = f_pos - plight.position; 
    float distance = length(light_direction); 

    if (distance > plight.range)
        return vec4(0, 0, 0, 0);

    light_direction = normalize(light_direction);
    vec4 color = CalculateLight(plight.light, light_direction, normal);

    float a = plight.atten.constant + (plight.atten.linear * distance) + (plight.atten.exponent * (distance * distance)) + 0.0001;

    return color / a;
}

vec4 CalculateSpotLight(SpotLight slight, vec3 normal)
{
    vec3 light_direction = normalize(f_pos - slight.plight.position);
    float spot_factor = dot(light_direction, slight.direction);

    vec4 color = vec4(0, 0, 0, 0);
    if (spot_factor > slight.cutoff)
        color = CalculatePointLight(slight.plight, normal) * (1.0 - ((1.0 - spot_factor) / (1.0 - slight.cutoff))); 

    return color; 
}

uniform SpotLight spot_light;

void main()
{
    FragColor = CalculateSpotLight(spot_light, f_nrm); // f_nrm is a (normal) attribute sent from vertex shader
}

您没有将 gl_Position 顶点着色器输出声明为 invariant,因此即使您使用完全相同的公式,并且在两个过程中按位输入完全相同,您的着色器也不会保证得到完全相同的结果。您应该向所有通道中的所有着色器添加适当的 invariance qualifiers