着色器 - 简单的 SSS 照明问题

Shader - Simple SSS lighting issue

我正在尝试使用着色器创建简单的次表面散射效果,但我遇到了一个小问题。

看看那些截图。这三个图像代表三种光照状态(在表面之上、真正接近表面、地下),具有不同的光照颜色(红色和蓝色),并且始终具有相同的地下颜色(红色)。

正如您可能注意到的那样,当光线在表面上方并且非常靠近该表面时,它的影响似乎会最小化,这是预期的行为。但问题是它对于次表面部分的行为是相同的,根据我的着色器代码这是正常的,但在我看来,当接近表面时,次表面光的影响应该更高。我建议你看一下屏幕截图以获得预期结果。

我该怎么做?

这是简化的着色器代码。

half ndotl = max(0.0f, dot(normalWorld, lightDir));
half inversendotl = max(0.0f, dot(normalWorld, -lightDir));
half3 lightColor = _LightColor0.rgb * ndotl; // This is the normal light color calculation
half3 subsurfacecolor = translucencyColor.rgb * inversendotl; // This is the subsurface color
half3 topsubsurfacecolor = translucencyColor.rgb; // This is used for adding subsurface color to top surface
final = subsurfacescolor + lerp(lightColor, topsubsurfacecolor * 0.5, 1 - ndotl - inversendotl);

顺便问一下,你实现次表面散射效果的方法很粗糙。使用如此简单的方法很难获得好的结果。 在选定的方法内,我会向您推荐以下内容:

  • 根据平方反比定律考虑到光源的距离。这适用于两个组件,直射光和次表面。

  • 一旦光线在表面后面,最好忽略内部法线和光线方向的点积,因为你永远不知道光线如何穿过物体。还有一个原因是因为折射定律(假设物体的折射系数高于空气之一)使得这个点积的影响较小。一旦光源在表面后面,您可以只使用 step 函数打开次表面组件。

因此,修改后的着色器版本如下:

half3 toLightVector = u_lightPos - v_fragmentPos;
half lightDistanceSQ = dot(toLightVector, toLightVector);
half3 lightDir = normalize(toLightVector);
half ndotl = max(0.0, dot(v_normal, lightDir));
half inversendotl = step(0.0, dot(v_normal, -lightDir));
half3 lightColor = _LightColor0.rgb * ndotl / lightDistanceSQ  * _LightIntensity0; 
half3 subsurfacecolor = translucencyColor.rgb * inversendotl / lightDistanceSQ  * _LightIntensity0;
half3 final = subsurfacecolor + lightColor;

其中 u_lightPos - 包含光源位置的统一,v_fragmentPos - 包含的变化片段的位置。

这是一个在 glsl 中使用 three.js 的例子:

   var container;
   var camera, scene, renderer;
   var sssMesh;
   var lightSourceMesh;
   var sssUniforms;

   var clock = new THREE.Clock();

   init();
   animate();

   function init() {
     container = document.getElementById('container');

     camera = new THREE.PerspectiveCamera(40, window.innerWidth / window.innerHeight, 1, 3000);
     camera.position.z = 4;
     camera.position.y = 2;
     camera.rotation.x = -0.45;

     scene = new THREE.Scene();

     var boxGeometry = new THREE.CubeGeometry(0.75, 0.75, 0.75);

     var lightSourceGeometry = new THREE.CubeGeometry(0.1, 0.1, 0.1);

     sssUniforms = {
       u_lightPos: {
         type: "v3",
         value: new THREE.Vector3()
       }
     };

     var sssMaterial = new THREE.ShaderMaterial({
       uniforms: sssUniforms,
       vertexShader: document.getElementById('vertexShader').textContent,
       fragmentShader: document.getElementById('fragment_shader').textContent
     });

     var lightSourceMaterial = new THREE.MeshBasicMaterial();

     sssMesh = new THREE.Mesh(boxGeometry, sssMaterial);
     sssMesh.position.x = 0;
     sssMesh.position.y = 0;
     scene.add(sssMesh);

     lightSourceMesh = new THREE.Mesh(lightSourceGeometry, lightSourceMaterial);
     lightSourceMesh.position.x = 0;
     lightSourceMesh.position.y = 0;
     scene.add(lightSourceMesh);

     renderer = new THREE.WebGLRenderer();
     container.appendChild(renderer.domElement);

     onWindowResize();

     window.addEventListener('resize', onWindowResize, false);

   }

   function onWindowResize(event) {
     camera.aspect = window.innerWidth / window.innerHeight;
     camera.updateProjectionMatrix();
     renderer.setSize(window.innerWidth, window.innerHeight);
   }

   function animate() {
     requestAnimationFrame(animate);
     render();
   }

   function render() {
     var delta = clock.getDelta();
     var lightHeight = Math.sin(clock.elapsedTime * 1.0) * 0.5 + 0.7;
     lightSourceMesh.position.y = lightHeight;
     sssUniforms.u_lightPos.value.y = lightHeight;
     sssMesh.rotation.y += delta * 0.5;
     renderer.render(scene, camera);
   }
    body {

      color: #ffffff;

      background-color: #050505;

      margin: 0px;

      overflow: hidden;

    }
    <script src="http://threejs.org/build/three.min.js"></script>
    <div id="container"></div>

    <script id="fragment_shader" type="x-shader/x-fragment">

    varying vec3 v_fragmentPos;
    varying vec3 v_normal;
    uniform vec3 u_lightPos;
    void main(void)
    {
        vec3 _LightColor0 = vec3(1.0,0.5,0.5);  
        float _LightIntensity0 = 0.2;
        vec3 translucencyColor = vec3(0.8,0.2,0.2);
        vec3 toLightVector = u_lightPos - v_fragmentPos;
        float lightDistanceSQ = dot(toLightVector, toLightVector);
        vec3 lightDir = normalize(toLightVector);
     float ndotl = max(0.0, dot(v_normal, lightDir));
     float inversendotl = step(0.0, dot(v_normal, -lightDir));
        vec3 lightColor = _LightColor0.rgb * ndotl / lightDistanceSQ * _LightIntensity0; 
     vec3 subsurfacecolor = translucencyColor.rgb * inversendotl / lightDistanceSQ * _LightIntensity0;
     vec3 final = subsurfacecolor + lightColor;
     gl_FragColor=vec4(final,1.0);
    }

    </script>

    <script id="vertexShader" type="x-shader/x-vertex">

    varying vec3 v_fragmentPos;
    varying vec3 v_normal;
                
    void main()
    {
     vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
        v_fragmentPos =  (modelMatrix * vec4( position, 1.0 )).xyz;
        v_normal =  (modelMatrix * vec4( normal, 0.0 )).xyz;
     gl_Position = projectionMatrix * mvPosition;
    }

    </script>

有大量不同的 SSS 模拟技术。 Texture-space diffusionshadowmap-based translucency 是最常用的技术。

查看来自 GPU Gems 的 this 文章,它描述了提到的技术。 此外,您还可以从 EA 找到有趣的 this 演示文稿。它提到了与您非常接近的渲染植物的方法。

球谐函数也适用于静态几何,但这种方法非常复杂,需要预先计算辐照度传递。查看 this 文章,其中显示了使用球谐函数来近似 SSS。